ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
|
|
- Ζεβεδαῖος Οικονόμου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ
2 ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος εξέτασης: 1. Ομαδική εργασία Ομάδες 2-3 ατόμων ΕΠΙΚΟΙΝΩΝΙΑ oγραφειο 305 ΚΤΙΡΙΟ Ι, ΠΡΟΚΑΤ ΔΕΥΤΕΡΑ & oτηλεφωνο: o gkoulina@pme.duth.gr
3 ΠΡΟΤΕΙΝΟΜΕΝΑ ΣΥΓΓΡΑΜΑΤΑ Μαρινάκης, Ι., Μαρινάκη Μ., Ματσατσίνης Ν., Ζοπουνίδης Κ. (2011), Μεθευρετικοι Και Εξελικτικοι Αλγοριθμοι Σε Προβληματα Διοικητικης Επιστημης, Εκδόσεις Κλειδάριθμος, Αθήνα Ταραντίλης Χ.Δ., Κυρανούδης Χ.Θ., Ιωάννου Γ., (2004), Διοίκηση Διανομών - Υπηρεσιών Στις Ελληνικές Επιχειρήσεις, Εκδόσεις Ι. Σιδέρης, Αθήνα
4 ΕΦΑΡΜΟΓΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΜΕΘΟΔΩΝ Μεταξύ άλλων, σημαντικά προβλήματα που αντιμετωπίζουν οι αλγόριθμοι εντοπίζονται σε εφαρμογές όπως: Χρονοπρογραμματισμός Έργων Δρομολόγηση Στόλου Οχημάτων Χωροθέτηση Εγκαταστάσεων Επιλογή Χαρτοφυλακίου
5 ΠΡΟΣΕΓΓΙΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ APPROXIMATION ALGORITHMS Οι κλασικές μέθοδοι ακέραιου και γραμμικού προγραμματισμού δεν μπορούν να χρησιμοποιηθούν για επίλυση ρεαλιστικών προβλημάτων καθώς αυτά απαιτούν εξαιρετικά μεγάλο αριθμό πράξεων για την εύρεση βέλτιστης λύσης Τέτοιου είδους προβλήματα αντιμετωπίζονται με «Προσεγγιστικούς Αλγορίθμους»
6 ΠΡΟΣΕΓΓΙΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ APPROXIMATION ALGORITHMS Αποτελεσματική επίλυση = βελτιωμένη τιμή αντικειμενικής συνάρτησης + αποδεκτός χρόνος
7 ΠΡΟΣΕΓΓΙΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ APPROXIMATION ALGORITHMS Οι προσεγγιστικοί αλγόριθμοι προσπαθούν να βρούν το Ολικό Βέλτιστο Ή Μια λύση πολύ κοντά στη βέλτιστη Τοπικό Βέλτιστο Σε αποδεκτό υπολογιστικό χρόνο
8 ΠΡΟΣΕΓΓΙΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ APPROXIMATION ALGORITHMS Ευρετικοί Αλγόριθμοι: Κλασικοί Ευρετικοί (Απλοί Ευρετικοί) Μεταευρετικοί («Ευφυείς» Αλγόριθμοι)
9 ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ CLASSIC HEURISTIC ALGORITHMS Ευρετικοί Κατασκευαστικοί Αλγόριθμοι Ευρετικοί Επαναληπτικής Βελτίωσης
10 ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ CONSTRUCTIVE HEURISTIC ALGORITHMS Πλεονεκτικοί Κατασκευαστικοί Στοχαστικοί Κατασκευαστικοί
11 ΕΥΡΕΤΙΚΟΙ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΒΕΛΤΙΩΣΗΣ ITERATIVE IMPROVEMENT HEURISTIC ALGORITHMS Αλγόριθμος Μέγιστης Κατάβασης (Steepest Descent Algorithm) Αποδοχή της συνολικά καλύτερης γειτονικής λύσης Αλγόριθμος Κατάβασης (Descent Algorithm) Αποδοχή της πρώτης καλύτερης γειτονικής λύσης
12 ΕΥΡΕΤΙΚΟΙ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΒΕΛΤΙΩΣΗΣ ITERATIVE IMPROVEMENT HEURISTIC ALGORITHMS Οι Αλγόριθμοι Επαναληπτικής Βελτίωσης αποτελούν αλγορίθμους Τοπικής Έρευνας (Local Search)
13 ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης που χρησιμοποιούν απλές κινήσεις στο χώρο των λύσεων Σκοπός: να είναι όσο το δυνατό περισσότερο ανεξάρτητοι από το πρόβλημα που αντιμετωπίζουν κάθε φορά Οδηγούν την έρευνα σε λύσεις πέρα από αυτές που παράχθηκαν από απλούς αλγορίθμους τοπικής αναζήτησης
14 ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Εντατικοποίηση της ερευνας στο χώρο των λύσεων (Intensification) Εστιασμένη αναζήτηση σε μικρές περιοχές με υψηλής ποιότητας λύσεις για να βρεθεί το τοπικά βέλτιστο σημείο Διαφοροποίηση της ερευνας στο χώρο των λύσεων (Diversification) Απεγκλωβισμός από τοπικά βέλτιστα και μετακίνηση σε άλλες περιοχές
15 ΕΝΤΑΤΙΚΟΠΟΙΗΣΗ ΔΙΑΦΟΡΟΠΟΙΗΣΗ INTENSIFICATION - DIVERSIFICATION Οι δύο «τακτικές» αναζήτησης στο χώρο των λύσεων Συμπληρωματική λειτουργία Σε δεδομένη φάση της επίλυσης προτείνεται η χρήση της μιας έναντι τη άλλης Βασική επιδίωξη: Η ισορροπία τους
16 ΕΝΤΑΤΙΚΟΠΟΙΗΣΗ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΟ ΧΩΡΟ ΤΩΝ ΛΥΣΕΩΝ INTENSIFICATION - DIVERSIFICATION Z(x) Τοπικό Ελάχιστο (Local minimum) Ολικό Ελάχιστο (Global minimum) x
17 ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ CONSTRUCTIVE HEURISTIC ALGORITHMS Γιατί χρησιμοποιήούμε κατασκευαστικούς ευρετικούς αλγορίθμους? 1. Προσεγγιστική αντιμετώπιση προβλημάτων που δεν επιλύονται βέλτιστα σε αποδεκτό χρόνο 2. Πλήρης κατανόηση της φύσης του προβλήματος που εξετάζεται καθώς οποιαδήποτε κίνηση στο χώρο των λύσεων ορίζεται με ακρίβεια
18 ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ CONSTRUCTIVE HEURISTIC ALGORITHMS Ο κατασκευστικός ευρετικός δημιουργεί μια λύση σταδιακά Η λύση περιλαμβάνει στοιχεία του προβλήματος «τοποθετημένα» με τέτοιο τρόπο ώστε να τηρούνται οι περιορισμοί του Η επιλογή στοιχείου που θα προστεθεί στη «μερική» λύση (partial solution) γίνεται με βάση κριτήριο σχετικό με την αντικειμενική συνάρτηση & τους περιορισμούς του προβλήματος
19 ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ CONSTRUCTIVE HEURISTIC ALGORITHMS Στόχος του κατασκευαστικού ευρετικού : Η σταδιακή κατασκευή λύσης με πρόσθεση σε κάθε επανάληψη του στοιχείου που θα προκαλέσει το ελάχιστο κόστος ή μέγιστο όφελος Σύμφωνα με κριτήριο που συνδέεται με την αντικειμενική συνάρτηση του προβλήματος Υπό την προϋπόθεση ότι τηρούνται οι περιορισμοί του προβλήματος
20 Το Πρόβλημα Του Περιοδεύοντος Πωλητή (Travelling Salesman Problem - TSP)
21 ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ NEAREST NEIGHBOR ALGORITHM Step 1: Set a node as start. Set as current Step 2: Find out the shortest edge connecting current node and an unvisited node N Step 3: Mark N as visited Step 4: Set node N as current Step 5: If all the nodes are visited, then terminate Step 6: Else, Go to Step 2
22 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM TSP) Θέτει το ερώτημα: Με δεδομένη μια λίστα πόλεων A-B-C-D-E-F-G-H και το κόστος μετάβασης ανά ζευγάρι πόλεων, ποιά είναι η διαδρομή μοναδικών επισκέψεων σε κάθε πόλη με το ελάχιστο κόστος και τελικά επιστροφή στην αφετηρία; oνα θεωρηθεί ως κόμβος αρχής ο κόμβος Α oνα πραγματοποιηθεί επίλυση του προβλήματος με χρήση ενός άπληστου κατασκευαστικού αλγορίθμου (greedy constructive algorithm)
23 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM - TSP) A B C D E F G H A B C D E F G H -
24 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM - TSP) A B C D E F G H A B C D E F G H
25 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM - TSP) B C D E H G F
26 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM - TSP) B C D E H G F
27 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 1 ΛΥΣΗ: A- A B C D E F G H A B C D E F G H
28 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 1 B C D Z= E H G F
29 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 2 ΛΥΣΗ: A-E A B C D E F G H A B C D E F G H
30 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 2 B C D Αντικειμενική Συνάρτηση Z= E H G F
31 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 3 ΛΥΣΗ: A-E-C A B C D E F G H A B C D E F G H
32 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 3 B C D Z= E H G F
33 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 4 ΛΥΣΗ: A-E-C-F A B C D E F G H A B C D E F G H
34 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 4 B C D Z= E G 176 F
35 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 5 ΛΥΣΗ: A-E-C-F-H A B C D E F G H A B C D E F G H
36 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 5 Z= B C E G 176 F
37 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 6 ΛΥΣΗ: A-E-C-F-H-D A B C D E F G H A B C D E F G H
38 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 6 B C D 176 Z= E F
39 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 7 ΛΥΣΗ: A-E-C-F-H-D-G A B C D E F G H A B C D E F G H
40 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 7 Z= B C D E 176 F
41 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 8 ΛΥΣΗ: A-E-C-F-H-D-G-B-A A B C D E F G H A B C D E F G H
42 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM LOOP 8 Z= B C D E 176 F
43 A CONSTRUCTIVE HEURISTIC ALGORITHM FOR TSP NEAREST NEIGHBOR ALGORITHM Άρα η αντικειμενική συνάρτηση z = = 1367 μονάδες
44 ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΕΡΙΟΔΕΥΟΝΤΟΣ ΠΩΛΗΤΗ (TRAVELLING SALESMAN PROBLEM - TSP) Με δεδομένη μια λίστα πόλεων και κόστους μετάβασης για κάθε ζεύγος πόλεων, ποιά είναι η διαδρομή αλληλουχία μοναδικών επισκέψεων σε κάθε πόλη με το ελάχιστο κόστος και τελικά επιστροφή στην αφετηρία? oνα θεωρηθεί ως «Αρχή» ο κόμβος Α oνα πραγματοποιηθεί επίλυση του προβλήματος με χρήση ενός στοχαστικού άπληστου κατασκευαστικού αλγορίθμου (stochastic greedy constructive algorithm)
45 ΣΤΟΧΑΣΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM Step 1: Set a node as start. Set as current Step 2: Find at random, an edge connecting current node and an unvisited node N Step 3: Mark N as visited Step 4: Set node N as current Step 5: If all the nodes are visited, then terminate Step 6: Else, Go to Step 2
46 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 1 «ΜΕΡΙΚΗ»ΛΥΣΗ: A- A B C D E F G H A B C D E F G H
47 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 2 Οι 7 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 1 7 τμηματα B C D E F G H Άρα επιλέγεται η E
48 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 1 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E Z=132 A B C D E F G H A B C D E F G H
49 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 2 Οι 6 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 2 6 τμηματα B C D F G H Άρα επιλέγεται η C
50 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 2 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C Z= A B C D E F G H A B C D E F G H
51 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 3 Οι 5 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 3 5 τμηματα B D F G H Άρα επιλέγεται η F
52 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 3 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F Z= A B C D E F G H A B C D E F G H
53 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 4 Οι 4 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 4 4 τμηματα B D G H Άρα επιλέγεται η D
54 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 5 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F-D Z= A B C D E F G H A B C D E F G H
55 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 5 Οι 3 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 5 3 τμηματα B G H Άρα επιλέγεται η B
56 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 5 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F-D-B Z= A B C D E F G H A B C D E F G H
57 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 6 Οι 2 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 5 2 τμηματα G H Άρα επιλέγεται η H
58 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 6 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F-D-B-H Z= A B C D E F G H A B C D E F G H
59 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM- LOOP 7 Οι 1 υποψήφιες λύσεις τοποθετούνται στο διάστημα [0,1] καταλαμβάνοντας ίσα επιμέρους διαστήματα ΓΕΝΝΗΤΡΙΑ ΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΣΥΝΑΡΤΗΣΗ RAND() LOOP 5 1 τμηματα G 0 1 Άρα επιλέγεται η G
60 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 7 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F-D-B-H-G Z= A B C D E F G H A B C D E F G H
61 STOCHASTIC GREEDY CONSTRUCTIVE ALGORITHM LOOP 8 «ΜΕΡΙΚΗ»ΛΥΣΗ: A-E-C-F-D-B-H-G-A Z= = 1423 μονάδες Επιστροφή στην Α A B C D E F G H A B C D E F G H
62 NEAREST NEIGHBOR VS STOCHASTIC GREEDY Ποιός αλγόριθμος αποδείχθηκε περισσότερο αποδοτικός?
63 Ερωτήσεις?
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΠΛΕΟΝΕΚΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ GREEDY CONSTRUCTIVE HEURISTICS Βασικό μειονέκτημα: οι αποφάσεις που
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης Χρησιμοποιούν
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΠΙΛΥΣΗ
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ The Tabu Search Algorithm Glover, F. (1986). Future paths for integer programming and links to artificial
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ Ο ΜΕΤΑΕΥΡΕΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ ΑΠΟΔΟΧΗΣ ΚΑΤΩΦΛΙΟΥ The Threshold Accepting Algorithm (TA Metaheuristic Algorithm
Διαβάστε περισσότεραΕυρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ
Ευρετικές Μέθοδοι Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)
ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι
Διαβάστε περισσότεραΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 10 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Διαβάστε περισσότεραΠαναγιώτης Καρακώστας (mai1321) ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών Πανεπιστήμιο Μακεδονίας
Παναγιώτης Καρακώστας (mai1321) ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών Πανεπιστήμιο Μακεδονίας Πρόβλημα Πλανόδιου Πωλητή (TSP) Περιγραφή Προβλήματος Μαθηματική Μορφοποίηση Ορόσημα στην Επίλυση
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΕΣΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ&
Διαβάστε περισσότεραΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διπλωματική εργασία ΑΛΓΟΡΙΘΜΟΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ TABU search algorithm for Vehicle Routing Problems
Διαβάστε περισσότεραI student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ
I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΕυρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής
Ευρετικές Μέθοδοι Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΕ ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 8 η Διάλεξη: Διανομή και Δρομολόγηση Οχημάτων 019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Αναφορές Οι σημειώσεις έχουν βασιστεί σε 1. Υλικό του ΣυΣΠαΛ.
Διαβάστε περισσότεραΜοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΑΡΧΙΚΟΠΟΙΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΛΑΝΟΔΙΟΥ ΠΩΛΗΤΗ ΜΕ ΧΡΟΝΙΚΑ ΠΑΡΑΘΥΡΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ VNS.
ΜΕΘΟΔΟΙ ΑΡΧΙΚΟΠΟΙΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΠΛΑΝΟΔΙΟΥ ΠΩΛΗΤΗ ΜΕ ΧΡΟΝΙΚΑ ΠΑΡΑΘΥΡΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ VNS. ΠΜΣ Εφαρμοσμένης Πληροφορικής, Συστήματα Υπολογιστών. ΧΡΗΣΤΟΣ ΠΑΠΑΛΙΤΣΑΣ 30/10/2014 Διάρθρωση παρουσίασης
Διαβάστε περισσότεραΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου
ΗΜΥ 325: Επαναληπτικές Μέθοδοι Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι. A. Levitin, Introduction to the Design and Analysis of Algorithms, 2 nd Ed. Περίληψη µαθήµατος Επιπρόσθετες Πληροφορίες
Διαβάστε περισσότεραHY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΜΕΙΟΝΕΚΤΗΜΑ
Διαβάστε περισσότεραOn line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Διαβάστε περισσότεραΤο Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΑΣΙΑ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΠΡΟΒΛΗΜΑ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΑΣΙΑ Μπούκοσης Δημήτριος 20/08/2017 1 Ευχαριστίες Θέλω να ευχαριστήσω τον επιβλέποντα της διπλωματικής εργασίας
Διαβάστε περισσότεραΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) VNS) (Variable Neighborhood Search -
ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) Department of & Technology, 1 ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood
Διαβάστε περισσότεραConstruction heuristics
Μια υπολογιστική μελέτη ευρετικών μεθόδων αρχικοποίησης διαδρομών για το πρόβλημα του πλανόδιου πωλητή Λαζαρίδης Αλέξανδρος Πανεπιστήμιο Μακεδονίας, ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων
Διαβάστε περισσότεραΑλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Διαβάστε περισσότερακαθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Διαβάστε περισσότεραΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα : Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Δρομολόγησης Στόλου Οχημάτων- Μέρος ΙΙ Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραγια NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΤΟΜΟ
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΑΠΛΗΣΤΗ ΤΥΧΑΙΟΠΟΙΗΜΕΝΗ ΠΡΟΣΑΡΜΟΣΤΙΚΗ ΑΝΑΖΗΤΗΣΗ (Solving
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Διαβάστε περισσότεραΟρισμένες Κατηγορίες Αλγορίθμων
Ορισμένες Κατηγορίες Αλγορίθμων Παύλος Εφραιμίδης pefraimi ee.duth.gr Οριασμένες κατηγορίες αλγορίθμων 1 Αλγόριθμοι Προσέγγισης Υπολογιστικά προβλήματα τα οποία είναι NPhard δεν μπορούμε να τα λύσουμε
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότερα2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Αλγόριθμοι περιορισμένης αναζήτησης για το πρόβλημα δρομολόγησης οχημάτων με παραλαβές και διανομές ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Λαλούσης Κωνσταντίνος
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής
Διαβάστε περισσότεραΣυστήματα Επιχειρηματικής Ευφυίας. Εισαγωγικές έννοιες Υπολογιστικής Νοημοσύνης
Συστήματα Επιχειρηματικής Ευφυίας Εισαγωγικές έννοιες Υπολογιστικής Νοημοσύνης Διάρθρωση του μαθήματος Το μάθημα αποτελείται από τρείς τρίωρες διαλέξεις και ένα επαναληπτικό τρίωρο. Οι διαλέξεις αφορούν
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διπλωματική εργασία Το Πρόβλημα δρομολόγησης με παραλαβές και παραδόσεις με χρήση του αλγορίθμου Περιορισμένης Αναζήτησης Γονιδάκης Ιωάννης Επιβλέπων
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos
Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 1 - Εισαγωγή στην Τεχνητή Νοημοσύνη Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Τμήμα Πληροφορικής A.T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ Rethinking University Teaching!!!
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Διαβάστε περισσότεραΑναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Διαβάστε περισσότεραΑλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση
Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης
Διαβάστε περισσότεραΕπίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Διαβάστε περισσότεραGraph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths
Διαβάστε περισσότεραΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διαβάστε περισσότεραΑλγόριθμος Περιορισμένης Αναζήτησης Για Το Πρόβλημα Δρομολόγησης Και Αποθεματοποίησης
Διπλωματική Εργασία Αλγόριθμος Περιορισμένης Αναζήτησης Για Το Πρόβλημα Δρομολόγησης Και Αποθεματοποίησης Συγγραφέας: Βασίλης Μαρκουλάκης Επιβλέπων: Ιωάννης Μαρινάκης Σχολή: Μηχανικών Παραγωγής και Διοίκησης
Διαβάστε περισσότεραΑλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Διαβάστε περισσότεραΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΜεταπτυχιακή Εργασία. Παπαδόπουλος Αθανάσιος. «Το Πρόβλημα της Δρομολόγησης Στόλου Οχημάτων : Μελέτη Περίπτωσης»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Μεταπτυχιακό : «Διοίκηση Επιχειρήσεων - (Μ.Β.Α.) Μεταπτυχιακή Εργασία Παπαδόπουλος Αθανάσιος Αριθμός Μητρώου: 292 «Το Πρόβλημα της Δρομολόγησης Στόλου Οχημάτων
Διαβάστε περισσότεραΚατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
Διαβάστε περισσότεραΚεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
Διαβάστε περισσότεραιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
Διαβάστε περισσότεραΤι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΖΗΤΗΣΗ TABU, SIMULATED ANNEALING ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Ιωάννης Γ. Μώρος ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού
Διαβάστε περισσότεραΠ 2.2 ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
Π 2.2 ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ Αριθμός Έκδοσης: ΕΚΕΤΑ ΙΜΕΤ ΕΜ Β 2014 14 Τίτλος Έργου: «Ολοκληρωμένο σύστημα για την ασφαλή μεταφορά μαθητών» Συγγραφείς: Δρ. Μαρία Μορφουλάκη Κοτούλα Κορνηλία Μαρία ΘΕΣΣΑΛΟΝΙΚΗ,
Διαβάστε περισσότεραΓράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΑλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Διαβάστε περισσότεραΚεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:
Διαβάστε περισσότεραΚεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Διαβάστε περισσότεραιπλωµατική Εργασία Ejection Chain Algorithms για την επίλυση TSP και VRP προβληµάτων Ονοµατεπώνυµο: Σταµατόπουλος Ευστάθιος ΑΜ:
Πολυτεχνείο Κρήτης Τµήµα Μηχανικών Παραγωγής και ιοίκησης ιπλωµατική Εργασία Ejection Chain Algorithms για την επίλυση TSP και VRP προβληµάτων Ονοµατεπώνυµο: Σταµατόπουλος Ευστάθιος ΑΜ: 2006010035 Επιβλέπων
Διαβάστε περισσότεραΑλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
Διαβάστε περισσότεραΔιπλωματική Εργασία. Εξελικτικός Αλγόριθμος για το Επιλεκτικό Πρόβλημα του Πλανόδιου Πωλητή. Πολυτεχνείο Κρήτης
Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Διπλωματική Εργασία Εξελικτικός Αλγόριθμος για το Επιλεκτικό Πρόβλημα του Πλανόδιου Πωλητή Εισηγητής: Α.Μ.: 2007010088 Επιβλέπων Καθηγητής: Μαρινάκης
Διαβάστε περισσότεραΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΤο στοχαστικό πρόβλημα δρομολόγησης εμπορευματικών μεταφορών
Το στοχαστικό πρόβλημα δρομολόγησης εμπορευματικών μεταφορών 23o Εθνικό Συνέδριο της Ελληνικής Εταιρίας Επιχειρησιακών Ερευνών «Διαχείριση Ενεργειακών Πόρων / Συστημάτων» Χρυσοχόου Ευαγγελία, Υ.Δ. Καθ.
Διαβάστε περισσότεραΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ
ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.
Διαβάστε περισσότεραΣχεδιασμός Διαδρομών και Προγραμματισμός Δρομολογίων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΦΟΔΙΑΣΤΙΚΗ Διδάσκων: Δρ. Σταύρος Τ. Πόνης Σχεδιασμός Διαδρομών και Προγραμματισμός Δρομολογίων
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός
Διαβάστε περισσότερα6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7
Διαβάστε περισσότερα