Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση
|
|
- Όφελος Παπάγος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση
2 Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης (Assignment)
3 Αλγόριθµοι Brute-Force Σε αυτή την κατηγορία εµπίπτουν όλοι οι αλγόριθµοι οι οποίοι πηγάζουν απευθείας από τη διατύπωση του προβλήµατος και τον ορισµό των διαφόρων «εννοιών» που συνεπάγονται από τη φύση του προβλήµατος. Πλέον Γενική Μέθοδος: Τα πλείστα προβλήµατα µε λύση έχουν µια λύση που εµπίπτει σε αυτή την κατηγορία Μπορεί να είναι πολύ καλή και πρακτική µέθοδος για προβλήµατα που η είσοδος είναι µικρού ή µεσαίου µεγέθους. Συνήθως η λύση που προκύπτει χρησιµοποιώντας αυτή τη µέθοδο δεν είναι αποδοτική
4 Προβλήµατα Αναζήτησης Είσοδος: Λίστα A[0,,n-1], Κλειδί Κ Έξοδος: Η θέση του κλειδιού στη λίστα (εάν υπάρχει) Search(A[], K) i=0 While i<n and A[i]!= K i=i+1; If i<n return i; return -1; Search2(A[], K) i=0 A[n]= K; While A[i]!= K i=i+1; If i<n return i; return -1; Καλύτερη Περίπτωση: Χειρότερη Περίπτωση:
5 Προβλήµατα Ταξινόµησης Είσοδος: Λίστα A[0,,n-1] Έξοδος: Ταξινοµηµένη λίστα A[0,,n-1] sort(a[]) for i=0 to n-2 min= i; for j=i+1 to n-1 if A[j] < A[min] min= j; swap(a[i],a[min]);
6 Selection Sort sort(a[0 n-1]) for i=0 to n-2 min= i; for j=i+1 to n-1 if A[j] < A[min] min= j; swap(a[i],a[min]);
7 Απόδοση Selection Sort sort(a[0 n-1]) for i=0 to n-2 min= i; for j=i+1 to n-1 if A[j] < A[min] min= j; swap(a[i],a[min]); Τι να υπολογίσουµε; Καλύτερη, χειρότερη ή µέση περίπτωση;
8 Αναζήτηση σειράς χαρακτήρων (string) Είσοδος: Λίστες T[0,,n-1], s[0,,k-1], k<n Έξοδος: Θέση στην οποία εµφανίζεται το s στην T stringmatch(t[0 n-1],s[0,,k-1]) for i=0 to n-k j=0; while (j<k && s[j]=t[i+j]) j=j+1; if j=k return i; return -1; Χειρότερη περίπτωση;
9 Πρόβληµα εύρεσης των δύο πλησιέστερων σηµείων Δεδοµένης µιας λίστας µε n σηµεία {P 0,,P n-1 } βρείτε ποια δύο σηµεία έχουν την µικρότερη απόσταση. Απόσταση µεταξύ δύο σηµείων σε χώρο D διαστάσεων: ( ) = x a,i x b,i d P a, P b D i=1 ( ) 2 Για παράδειγµα σε δυσδιάστατο χώρο, d ( P a, P b ) = ( x a,1 x ) 2 b,1 + ( x a,2 x ) 2 b,2 = ( x a x b ) 2 + ( y a y b ) 2
10 Πλησιέστερα Σηµεία ClosestPoints(P[0 n-1]) dmin= infinity; for i=0 to n-2 for j=i+1 to n-1 d= sqrt((x i -x j ) 2 +(y i -y j ) 2 ); if d < dmin return p1, p2; dmin= d; p1=i, p2=j;
11 Πρόβληµα εύρεσης του κυρτού χώρου που εµπερικλείει ένα σύνολο από σηµεία Κυρτός (convex) χώρος: Ένας χώρος είναι κυρτός εάν για κάθε δύο σηµεία που ανήκουν στον χώρο, όλα τα σηµεία που βρίσκονται στο τµήµα της ευθείας που ενώνει τα δύο σηµεία ανήκει επίσης στον χώρο Για παράδειγµα σε δυσδιάστατο χώρο, Κυρτός χώρος Μη Κυρτός χώρος
12 Πρόβληµα εύρεσης του κυρτού χώρου που εµπερικλείει ένα σύνολο από σηµεία Δεδοµένης µιας λίστας µε n σηµεία {P 1,,P n } βρείτε το µικρότερο κυρτό χώρο που εµπερικλείει όλα τα σηµεία {P 1,,P n } (convex hull). Θεώρηµα: Το convex hull ενός συνόλου από σηµεία {P 1,,P n } (n>2) είναι ένα πολύγωνο του οποίου οι γωνίες είναι κάποιο από τα σηµεία του συνόλου {P 1,,P n }. Για παράδειγµα σε δυσδιάστατο χώρο,
13 Convex Hull ConvexHall(P[1 n]) for i=1 to n-1 for j=i+1 to n findline(p i,p j ); k=1; P=getNextPoint; while (k<n-2) and sameside(p); k=k+1; P=getNextPoint; if k=n-2 (P i,p j ) on boundary;
14 Γεωµετρία
15 Βελτιστοποίηση Λύστε το πιο κάτω πρόβληµα βελτιστοποίησης
16 Βελτιστοποίηση minimize(f,x0,x1,y0,y1,n) d=(x1-x0)/(n-1); e=(y1-y0)/(n-1); min= infinity; for i=0 to n-1 for j=0 to n-1 if f(x0+i*d, y0+j*e)<min; min= f(x0+i*d, y0+j*e); xm=x0+i*d; ym= y0+j*e; return min, xm, ym;
17 Πρόβληµα του Περιοδεύων Πωλητή (Traveling Salesman Problem (TSP)) Ένας πωλητής θέλει να επισκεφτεί n πόλεις και να επιστρέψει στο σηµείο από όπου ξεκίνησε µε το πιο «γρήγορο» τρόπο. Δεν πρέπει να επισκεφτεί µια πόλη περισσότερες από µια φορές Βρείτε το πιο σύντοµο Hamiltonian Circuit. Hamiltonian Circuit: είναι ένα µονοπάτι το οποίο επισκέπτεται όλους τους κόµβους του γράφου από µία φορά και επιστρέφει στο σηµείο από όπου ξεκίνησε. Α 2 Β C 1 D
18 Πρόβληµα του Περιοδεύων Πωλητή (Traveling Salesman Problem (TSP)) Βρέστε όλα τα πιθανά µονοπάτια Κρατήστε εκείνο µε το χαµηλότερο κόστος Α 2 Β C 1 D Α C D B Α C= Α D B C Α C= Α C B D Α C= Α D C B Α C=18
19 Πρόβληµα του Περιοδεύων Πωλητή (Traveling Salesman Problem (TSP)) Πιθανή λύση: Πλεονεκτικός (greedy) αλγόριθµος Σε κάθε κόµβο επιλέγω την ακµή µε το µικρότερο κόστος! Α Β 5 1 E 1 5 C 8 D Στη γενική περίπτωση, ο αλγόριθµος ΔΕΝ βρίσκει τη βέλτιστη λύση.
20 Knapsack Problem Ένας ορειβάτης προγραµµατίζει την επόµενη του περιπέτεια. Στο σακίδιο του µπορεί να µεταφέρει µέχρι n κιλά. Υπάρχουν m αντικείµενα τα οποία µπορεί να του χρησιµεύσουν Κάθε αντικείµενο ζυγίζει w i κιλά Η «χρησιµότητα» του κάθε αντικειµένου δίνεται από ένα δείκτη y i. Βοηθήστε τον ορειβάτη να βρει πώς να γεµίσει το σακίδιο του έτσι ώστε να µεγιστοποιήσει τη συνολική «χρησιµότητα» όλων των αντικειµένων που θα πάρει µαζί του. Παραδείγµατα στα οποία το πιο πάνω πρόβληµα εφαρµόζει
21 Knapsack Problem: Παράδειγµα Το σακίδιο µπορεί να χωρέσει 10 κιλά Υπάρχουν 4 αντικείµενα 1. Βάρος= 7, χρησιµότητα= Βάρος= 3, χρησιµότητα= Βάρος= 4, χρησιµότητα= Βάρος= 5, χρησιµότητα= 25 Όλοι οι πιθανοί συνδυασµοί: Συνδυασµός Βάρος Τιµή Συνδυασµός Βάρος Τιµή {Άδειο} 0 0 {1,4} 12 - {1} 7 42 {2,3} 7 52 {2} 3 12 {2,4} 8 37 {3} 4 40 {3,4} 9 65 {4} 5 25 {1,2,3}, {1,2,4} - {1,2} {1,3,4}, {2,3,4} - {1,3} 11 - {1,2,3,4} -
22 Πρόβληµα Ανάθεσης (Assignment) Υπάρχουν n φοιτητές και n προβλήµατα. Για την καλύτερη κατανοµή του φόρτου εργασίας ο κάθε φοιτητής θα λύσει ένα από τα προβλήµατα. Εάν ο φοιτητής i επιχειρήσει το πρόβληµα j τότε θα πάρει b ij βαθµούς Πως πρέπει να κατανεµηθούν τα προβλήµατα έτσι ώστε να µεγιστοποιηθεί ο βαθµός ολόκληρης της τάξης; Άλλα παραδείγµατα στα οποία εφαρµόζει αυτό το πρόβληµα
23 Παράδειγµα Προβλήµατος Ανάθεσης Υποθέστε πως υπάρχουν 4 φοιτητές και 4 προβλήµατα και οι βαθµοί φαίνονται πιο κάτω. Φοιτ. 1 Φοιτ. 2 Φοιτ. 3 Φοιτ. 4 Πρόβ Πρόβ Πρόβ Πρόβ Το διάνυσµα [φ 1, φ 2, φ 3, φ 4 ] αντιπροσωπεύει το φοιτητή που θα λύσει το πρόβληµα 1, 2, 3, και 4 αντίστοιχα Βρείτε όλες τις πιθανές αναθέσεις (permutations) και υπολογίστε το συνολικό βαθµό Πόσες οι πιθανές αναθέσεις υπάρχουν;
Αλγόριθµοι Divide-and- Conquer
Αλγόριθµοι Divide-and- Conquer Περίληψη Αλγόριθµοι Divide-and-Conquer Master Theorem Παραδείγµατα Αναζήτηση Ταξινόµηση Πλησιέστερα σηµεία Convex Hull Αλγόριθµοι Divide-and-Conquer Γενική Μεθοδολογία Το
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και
Αλγόριθµοι Τύπου Μείωσης Προβλήµατος
Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 3: Ωμή Βία. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: Ωμή Βία Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΠΛΕΟΝΕΚΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ GREEDY CONSTRUCTIVE HEURISTICS Βασικό μειονέκτημα: οι αποφάσεις που
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αλγόριθμοι Ταξινόμησης Μέρος 1
Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006
Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO
ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου
ΗΜΥ 325: Επαναληπτικές Μέθοδοι Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι. A. Levitin, Introduction to the Design and Analysis of Algorithms, 2 nd Ed. Περίληψη µαθήµατος Επιπρόσθετες Πληροφορίες
Construction heuristics
Μια υπολογιστική μελέτη ευρετικών μεθόδων αρχικοποίησης διαδρομών για το πρόβλημα του πλανόδιου πωλητή Λαζαρίδης Αλέξανδρος Πανεπιστήμιο Μακεδονίας, ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Δυναµικός Προγραµµατισµός (ΔΠ)
Δυναµικός Προγραµµατισµός (ΔΠ) Περίληψη Δυναµικός Προγραµµατισµός Αρχή του Βέλτιστου Παραδείγµατα Δυναµικός Προγραµµατισµός ΔΠ (Dynamic Programming DP) Μέθοδος σχεδιασµού αλγορίθµων Είναι µια γενική µεθοδολογία
Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης
Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων
Αλγόριθµοι Οπισθοδρόµησης
Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 10 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).
Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
Παναγιώτης Καρακώστας (mai1321) ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών Πανεπιστήμιο Μακεδονίας
Παναγιώτης Καρακώστας (mai1321) ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών Πανεπιστήμιο Μακεδονίας Πρόβλημα Πλανόδιου Πωλητή (TSP) Περιγραφή Προβλήματος Μαθηματική Μορφοποίηση Ορόσημα στην Επίλυση
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα
Διερεύνηση γραφήματος
Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ 16.00-19.00 (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Εισαγωγή στον δομημένο προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στον δομημένο προγραμματισμό Ενότητα 5 η : Πίνακες (Προχωρημένα Θέματα) Αν. καθηγητής Στεργίου Κώστας e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση»
Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση» Διδάσκων: Ε. Χαρμανδάρης Θέμα: «Το πρόβλημα του περιπλανώμενου πωλητή, ακριβείς, ευριστικές και ενδιαφέρουσες λύσεις» Φώτογλου Ιωακείμ,
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Αναζήτηση και ταξινόμηση
Αναζήτηση και ταξινόμηση Περιεχόμενα Αναζήτηση (searching): εύρεση ενός στοιχείου σε έναν πίνακα Ταξινόμηση (sorting): αναδιάταξη των στοιχείων ενός πίνακα ώστε να είναι τοποθετημένα με μια καθορισμένη
Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).
Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη
Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP)
Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Αλγόριθμος Prim Ξεκινάμε από ένα δένδρο Τ αποτελούμενο από ένα μόνο κόμβο. Στη συνέχεια, σε κάθε
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11
Αλγόριθμοι και Πολυπλοκότητα 2η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Δεκέμβριος 2018 (CoReLab - NTUA) Αλγόριθμοι - 2η σειρά ασκήσεων Δεκέμβριος 2018 1 / 64 Outline 1 Άσκηση
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως
Union Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
Αλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις
Πρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2
Πρόβληµα (ADT) Λεξικού Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2 Πρόβληµα (ADT) Λεξικού Δυναµικά µεταβαλλόµενη συλλογή αντικειµένων που αναγνωρίζονται µε κλειδί (π.χ. κατάλογοι,
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,
Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1
Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Σχετικά με το Μάθημα Ώρες γραφείου: Δευτέρα Παρασκευή
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη
4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου
. Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μετασχημάτισε και Κυριάρχησε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μετασχημάτισε και Κυριάρχησε
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 5) 1 / 17 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση
Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
int Α[] = {4, 16, 22, 12, 9, 15, 10}; { 4, 9, 10, 12, 15, 16, 22 } Α[0]=4, Α[1]=9, Α[2]=10 { 4, 16,22, 12, 9, 15, 10} { 4, 12, 16, 22, 9, 15,16, 22 }
ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης INSERTION, SELECTION και BUBBLE SORT με την ολοκλήρωσή τους θα έχουν σε κάθε θέση του πίνακα το σωστό στοιχείο x (ταξινόμηση με αύξουσα σειρά δηλ. στην θέση
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 4: Διαίρει και Βασίλευε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Θέματα Μεταγλωττιστών
Γιώργος Δημητρίου Ενότητα 3 η : Ενδιάμεση Αναπαράσταση / SSA Ενδιάμεση Αναπαράσταση (IR) Η ενδιάμεση αναπαράσταση αποθηκεύει τη συγκεντρωμένη πληροφορία από την ανάλυση ενός προγράμματος Από την ενδιάμεση
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που