1 Οι πραγµατικοί αριθµοί
|
|
- Αμύντα Γερμανός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας ακέραιος διαιρείται µε το δύο ή όχι αντίστοιχα. Το µηδέν είναι άρτιος. Το σύνολο των ϱητών Q = {x : x = p, p, q Z, q 0} q Το σύνολο των ϑετικών ϱητών Q + = {x Q : x > 0} Το σύνολο των πραγµατικών αριθµών συµβολίζεται µε R και παριστάνεται µε την πραγ- µατική ευθεία 0 x R + Το σύνολο των ϑετικών πραγµατικών R + = {x R : x > 0} Το σύνολο των αρνητικών πραγµατικών R = {x R : x < 0} Εστω A, B δυο υποσύνολα του R, δηλαδή A, B R. Το καρτεσιανό γινόµενο A B ορίζεται ως το σύνολο των Ϲευγαριών (a, b) όπου το a διατρέχει το A και το b διατρέχει το B, δηλαδή A B = {(a, b) : a A, b B}. 1.2 ιαστήµατα Εστω α, ϐ R µε α < ϐ. διαστήµατα στον R είναι ιάφορα κλειστά, ανοικτά, ανοικτά-κλειστά, κλειστά-ανοικτά [α, ϐ] = {x R, α x ϐ}, [α, ϐ) = {x R, α x < ϐ} (α, ϐ] = {x R, α < x ϐ}, (α, ϐ) = {x R, α < x < ϐ} [α, + ) = {x R, x a}, (α, + ) = {x R, x > a} (, ϐ) = {x R, x < b}, (, ϐ] = {x R, x ϐ} (, + ) = R 1
2 Οταν το άκρο ενός διαστήµατος στον R είναι ± τότε το διάστηµα είναι πάντα ανοικτό στο άκρο αυτό και σηµειώνεται µε παρένθεση. Τα ± δεν ϑεωρούνται αριθµοί. Θεώρηµα 1.1. Το Q είναι γνήσιο υποσύνολο του R, δηλαδή υπάρχουν στοιχεία του R που δεν είναι στοιχεία του Q. Απόδειξη : Εστω y R, y > 0 τέτοιος που y 2 = 2. Θα δείξουµε ότι ο y δεν ανήκει στους ϱητούς, y / Q. Θα χρησιµοποιήσουµε απαγωγή σε άτοπο. Εστω ότι y Q, µε y = m/n όπου m, n ϑετικοί ακέραιοι και µ.κ.δ.(m, n)=1, δηλαδή το κλάσµα m/n είναι ανάγωγο. Ειδικότερα οι m, n δεν είναι και οι δυο άρτιοι. Εχουµε ότι m 2 = 2 n 2, άρα ο m είναι άρτιος, (το τετράγωνο περιττού είναι περιττός). Εστω m = 2k, k ϑετικός ακέραιος. Τότε n 2 = 2k 2 και συνεπώς και ο n είναι άρτιος. Άτοπο, γιατί υποθέσαµε ότι µ.κ.δ.(m, n)=1 κι έτσι οι m, n δεν µπορούν να είναι και οι δυο άρτιοι. Άρα η υπόθεση µε την οποία ξεκινήσαµε y Q είναι λάθος, άρα y / Q. 1.3 Αξιωµατική ϑεµελίωση των πραγµατικών αριθµών Το σύνολο των ϱητών αριθµών Q και το σύνολο των πραγµατικών αριθµών R µε τις συνηθισµένες πράξεις της πρόσθεσης και του πολλαπλασιασµού είναι διατεταγµένα σώµατα ιατεταγµένα σώµατα Ορισµός 1.2. Ενα µή κενό σύνολο Σ λέγεται διατεταγµένο σώµα αν ικανοποιεί τις ακόλουθες ιδιότητες : α) Αξιώµατα της πρόσθεσης Για κάθε Ϲευγάρι στοιχείων x, y του Σ, υπάρχει ακριβώς ένα στοιχείο του Σ που συµβολίζεται µε x + y και λέγεται το άθροισµα των x, y. Η πράξη που στέλνει το Ϲευγάρι (x, y) στο x + y λέγεται πρόσθεση κι ικανοποιεί τις ακόλουθες ιδιότητες : Προσεταιριστική x, y, z Σ ισχύει ότι (x + y) + z = x + (y + z) Αντιµεταθετική x, y Σ ισχύει ότι x + y = y + x Υπαρξη µηδενικού στοιχείου. Υπάρχει µοναδικό στοιχείο του Σ που συµβολίζεται µε 0 τέτοιο ώστε x Σ, x + 0 = 0 + x = x Υπαρξη αντίθετου στοιχείου. Για κάθε στοιχείο x του Σ υπάρχει µοναδικό στοιχείο του Σ, που συµβολίζεται µε x τέτοιο ώστε x + ( x) = ( x) + x = 0. 2
3 Η αφαίρεση στο Σ ορίζεται από την σχέση x y = x + ( y) x, y Σ. ϐ) Αξιώµατα του πολλαπλασιασµού Για κάθε Ϲευγάρι στοιχείων x, y του Σ, υπάρχει ακριβώς ένα στοιχείο του Σ που συµβολίζεται µε x y και λέγεται το γινόµενο των x, y. Η πράξη που στέλνει το Ϲευγάρι (x, y) στο x y λέγεται πολλαπλασιασµός κι ικανοποιεί τις ακόλουθες ιδιότητες : Προσεταιριστική x, y, z Σ ισχύει ότι (x y) z = x (y z) Αντιµεταθετική x, y Σ ισχύει ότι x y = y x Υπαρξη µοναδιαίου στοιχείου. Υπάρχει µοναδικό στοιχείο του Σ που συµβολίζεται µε 1 τέτοιο ώστε x Σ, x 1 = 1 x = x Υπαρξη αντίστροφου στοιχείου. Για κάθε µη µηδενικό στοιχείο x του Σ, υπάρχει µοναδικό στοιχείο του Σ, που συµβολίζεται µε x 1 τέτοιο ώστε x x 1 = x 1 x = 1, x 0. Η διαίρεση στο Σ ορίζεται από την σχέση x y = x y 1 x, y Σ, y 0. γ) Επιµεριστική ιδιότητα Η επιµεριστική ιδιότητα συνδέει τον πολλαπλασιασµό µε πρόσθεση : x, y, z Σ ισχύει x (y + z) = x y + x z. δ) Ιδιότητες της διάταξης Υπάρχει ένα υποσύνολο Θ του Σ, που λέγεται το σύνολο των ϑετικών στοιχείων του Σ, το οποίο ορίζεται από τις ακόλουθες ιδιότητες Για κάθε στοιχείο x του Σ ισχύει ακριβώς ένα από τα ακόλουθα x Θ, x Θ, x = 0. Αν x, y Θ τότε x + y Θ και x y Θ. Το σύνολο Θ ορίζει µια διάταξη στο σώµα Σ ως εξής : Λέµε ότι x > y αν και µόνο αν x y Θ. Γράφοντας x 0 εννοούµε ότι x > y ή x = y. Από τον ορισµό του Θ προκύπτει ότι x Θ x > 0. 3
4 Από τις ιδιότητες του Θ έπονται οι παρακάτω ιδιότητες της διάταξης >: (νόµος της τριχοτοµίας) Για κάθε Ϲευγάρι στοιχείων x, y του Σ ισχύει ακριβώς ένα από τα ακόλουθα x > y, x < y, x = y. (µεταβατική ιδιότητα) Αν x > y και y > z, τότε x > z. (νόµος διαγραφής για την πρόσθεση) Αν x > y τότε για κάθε z ισχύει ότι x + z > y + z (νόµος διαγραφής για τον πολ/σµό) Αν x > y και z > 0, τότε x z > y z. Το σύνολο Q των ϱητών αριθµών µε τις συνηθισµένες πράξεις της πρόσθεσης και του πολλαπλασισµού είναι το τυπικό παράδειγµα ενός διατεταγµένου σώµατος. Το σύνολο R των πραγµατικών αριθµοί µε τις συνηθισµένες πράξεις της πρόσθεσης και του πολλαπλασιασµού είναι διατεταγµένο σώµα. Μια ιδιότητα που διαφοροποιεί το Q από το R είναι το αξίωµα της πληρότητας που εξετάζουµε παρακάτω Το αξίωµα της πληρότητας Από την στιγµή που σ ένα διατεταγµένο σώµα Σ έχουµε ορίσει µια διάταξη > µπορούµε να µιλάµε για υποσύνολα του Σ που είναι άνω ή κάτω ϕραγµένα. Ορισµός 1.3. Εστω ένα διατεταγµένο σώµα Σ. Ενα υποσύνολο A του Σ λέγεται άνω ϕραγµένο, αν υπάρχει a Σ τέτοιο ώστε x a, για κάθε x A, κάτω ϕραγµένο, αν υπάρχει b Σ τέτοιο ώστε b x, για κάθε x A, ϕραγµένο, αν είναι άνω και κάτω ϕραγµένο. Κάθε στοιχείο του Σ που ικανοποιεί τον παραπάνω ορισµό λέγεται άνω (αντίστοιχα κάτω) ϕράγµα του A. Ορισµός 1.4. α) Εστω A ένα άνω ϕραγµένο υποσύνολο του διατεταγµένου σώµατος Σ. Λέµε ότι το στοιχείο a Σ είναι ελάχιστο άνω ϕράγµα του A αν το a είναι άνω ϕράγµα του A και αν a 1 είναι ένα άνω ϕράγµα του A τότε a a 1. ϐ) Εστω A ένα κάτω ϕραγµένο υποσύνολο του διατεταγµένου σώµατος Σ. Λέµε ότι το στοιχείο a Σ είναι µέγιστο κάτω ϕράγµα του A αν το a είναι κάτω ϕράγµα του A και αν a 1 είναι ένα κάτω ϕράγµα του A τότε a a 1. 4
5 Στην περίπτωση που υπάρχουν, ϑα συµβολίζουµε το ελάχιστο άνω ϕράγµα του A µε sup A (supremum του A), και το µέγιστο κάτω ϕράγµα του A µε inf A (infimum του A). Προσοχή!!! Τα sup A, inf A µπορεί να είναι στοιχεία του A, αλλά µπορεί και να µην είναι. Στην περίπτωση που sup A A, inf A A, τότε τα sup A και inf A είναι το µέγιστο και το ελάχιστο στοιχείο του A, αντίστοιχα, δηλαδή sup A = max A και inf A = min A. Παράδειγµα α) Εστω A = [0, 1). Τότε sup A = 1 / A, inf A = 0 A. ϐ) Εστω A = (1, 3]. Τότε inf A = 1 / A, sup A = 3 A. Το αξίωµα της πληρότητας : Λέµε ότι ένα διατεταγµένο σώµα Σ ικανοποιεί το αξίωµα της πληρότητας αν κάθε µη κενό και άνω ϕραγµένο υποσύνολο A του Σ έχει ελάχιστο άνω ϕράγµα a Σ. Ενα διατεταγµένο σώµα Σ που ικανοποιεί το αξίωµα της πληρότητας λέγεται πλήρως διατεταγµένο σώµα. Το σύνολο Q των ϱητών αριθµών δεν είναι πλήρως διατεταγµένο σώµα, δηλαδή υπάρχει µη κενό άνω ϕραγµένο υποσύνολο A του Q το οποίο δεν έχει ελάχιστο άνω ϕράγµα (στο Q). Πράγµατι, ας ϑεωρήσουµε το υποσύνολο A του Q µε A = {x Q : x > 0 και x 2 < 2} Το A είναι µή κενό αφού 1 A και το A είναι άνω ϕραγµένο µε ένα άνω ϕράγµα το 2, αφού 2 > 0 και 2 2 = 4 > 2 > x 2, οπότε x < 2 για κάθε x A. Παραλείποντας µια αυστηρή απόδειξη, αν υπήρχε το ελάχιστο άνω ϕράγµα του A αυτό ϑα ήταν το 2, το οποίο όµως γνωρίζουµε από το Θεώρηµα 1.1 ότι λείπει από το Q. Στο σύνολο R των πραγµατικών αριθµών ισχύει το αξίωµα της πληρότητας. Αξίωµα της πληρότητας για τους πραγµατικούς αριθµούς : Κάθε µη κενό, άνω ϕραγ- µένο υποσύνολο A του R έχει ελάχιστο άνω ϕράγµα α R. Το σύνολο R των πραγµατικών αριθµών είναι ένα πλήρως διατεταγµένο σώµα. 1.4 Αρχιµήδεια ιδιότητα των πραγµατικών Εστω ε και α πραγµατικοί αριθµοί, ε, α R µε ε > 0. Υπάρχει ϕυσικός αριθµός n N τέτοιος ώστε n ε > α. 5
6 Απόδειξη : Θα πάµε µε απαγωγή σε άτοπο. Ας υποθέσουµε ότι δεν υπάρχει ϕυσικός αριθµός n N τέτοιος ώστε n ε > α. ηλαδή για κάθε ϕυσικό αριθµό n N έχουµε n ε α. Τότε το υποσύνολο A = {n ε : n N} των πραγµατικών είναι άνω ϕραγµένο µε ένα άνω ϕράγµα το α. Από το αξίωµα της πληρότητας υπάρχει το ελάχιστο άνω ϕράγµα του A, ας το πούµε ϐ = sup A R. Προφανώς ϐ ε < ϐ, άρα το ϐ ε δεν είναι άνω ϕράγµα του A. Εποµένως µπορούµε να ϐρούµε ϕυσικό n 0 N τέτοιο ώστε n 0 ε > ϐ ε. Εστω τώρα n 1 = n ο επόµενος ϕυσικός από τον n 0. Τότε η προηγούµενη ανισότητα γίνεται n 0 ε > ϐ ε (n 1 1) ε > ϐ ε n 1 ε ε > ϐ ε n 1 ε > ϐ Άτοπο, γιατί το ϐ είναι άνω ϕράγµα του A (και µάλιστα το ελάχιστο). Ουσιαστικά, η Αρχιµήδεια ιδιότητα των πραγµατικών µας λέει ότι το N δεν είναι άνω ϕραγµένο υποσύνολο του R. (Σκεφτείτε την Αρχιµήδεια ιδιότητα για ε = 1). 1.5 Ακέραιο µέρος, άρρητοι αριθµοί και πυκνότητα ϱητών και αρ- ϱήτων στους πραγµατικούς Πρόταση 1.5. Για κάθε πραγµατικό αριθµό x R, υπάρχει ακέραιος m Z τέτοιος ώστε m x < m + 1. Ο ακέραιος m λέγεται το ακέραιο µέρος του x και συµβολίζεται µε [x]. Για παράδειγµα [2.7] = 2, [ 2.7] = 3, [π] = 3. Πρόταση 1.6. Για κάθε x, y R, µε x < y, υπάρχει ϱητός p µε την ιδιότητα x < p < y. Η προηγούµενη πρόταση µας πληροφορεί για την πυκνότητα των ϱητών αριθµών στους πραγµατικούς και ουσιαστικά είναι απόρροια της Αρχιµήδειας ιδιότητας των πραγµατικών και της ύπαρξης του ακεραίου µέρους. Ορισµός 1.7. Είδαµε ότι υπάρχουν πραγµατικοί οι οποίοι δεν είναι ϱητοί αριθµοί, π.χ. ο 2. Κάθε πραγµατικός αριθµός που δεν είναι ϱητός λέγεται άρρητος. Πρόταση 1.8. Οι άρρητοι είναι πυκνοί στο R: για κάθε x, y R, µε x < y, υπάρχει άρρητος α τέτοιος ώστε x < α < y. 1.6 Απόλυτη τιµή Ορισµός 1.9. (Απόλυτη τιµή) Για κάθε a R ϑέτουµε a αν a 0, a = a αν a < 0. Το a λέγεται απόλυτη τιµή του a. Αν τοποθετήσουµε τον a σε ένα σηµείο της πραγµατικής ευθείας σκεφτόµαστε το a ως την απόσταση του a από το 0. Από τον ορισµό προκύπτει ότι a = a και ότι a 0 για κάθε a R 6
7 ιακρίνοντας περιπτώσεις για το a εύκολα ϐλέπουµε ότι για κάθε a, ε R, ε > 0 ισχύει Επιπλέον ισχύει ότι a ε αν και µόνο αν ε a ε a ε αν και µόνο αν a ε ή a ε Με τον ίδιο τρόπο (διακρίνοντας περιπτώσεις) εύκολα αποδεικνύεται ότι για κάθε a, b R ισχύει a b a + b a + b Αντικαθιστώντας στην παραπάνω σχέση τον b µε τον b παίρνουµε ότι ισχύει και a b a b a + b 7
8 1.7 Ασκήσεις Ασκηση 1 Να υπολογισθούν (αν υπάρχουν) τα sup, inf, max, min των παρακάτω συνόλων (1) A = {x R, x 2} (2) B = {x R : x = n 2, n = 1, 2, 3...} (3) C = {x R : 0 x < 1 + 1, n n = 1, 2, 3...} Ασκηση 2 Να υπολογισθούν (αν υπάρχουν) τα sup, inf, max, min των παρακάτω συνόλων (1) A = {x R, x > 0 : 0 < x 2 1 2} (2) B = {x Q : x 0, 0 < x 2 1 2} (3) C = {x R : x 2 + x + 1 0} (4) D = {x R : x 2 + x + 1 < 0} (5) E = {x R : x < 0, x 2 + x 1 < 0} (6) F = {x Q : (x 1)(x + 2) < 0} Ασκηση 3 Εστω A µη κενό ϕραγµένο υποσύνολο του R. είξτε ότι το A είναι µονοσύνολο αν και µόνο αν sup A = inf A. ( Ενα σύνολο A λέγεται µονοσύνολο αν περιέχει ένα και µόνο ένα στοιχείο, A = {a} ) Ασκηση 4 είξτε ότι τα παρακάτω ισχύουν στο R (i) Αν x < y + ε για κάθε ε > 0, τότε x y. (ii) Αν x y + ε για κάθε ε > 0, τότε x y. (iii) Αν x y ε για κάθε ε > 0, τότε x = y. Ασκηση 5 Να ϐρεθούν οι τιµές του x που ικανοποιούν τις ισότητες (i) 5 x + 4 = 1, (ii) 3 x + 2 = 5, (iii) x 3 x 4 = 5, (iv) 4 x + 5 = 8 x 3 Ασκηση 6 Να ϐρεθεί για ποιές τιµές του x ικανοποιούνται οι ανισότητες (i) 3 2 x 2 + x 4, (ii) 3 x + 5 4, (iii) 1 x 4 1 x + 7 < 0. 8
1 Οι πραγµατικοί αριθµοί
1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς
1 Οι πραγµατικοί αριθµοί
1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς
1 Οι πραγµατικοί αριθµοί
Οι πραγµατικοί αριθµοί. Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {,, 3,...} Το σύνολο των ακεραίων Z = {... 3,,, 0,,, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας
1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή
KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι
ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ
ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
Ανάλυση Ι και Εφαρµογές
Ανάλυση Ι και Εφαρµογές Σηµειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τµήµα Φυσικής Πανεπιστήµιο Αθηνών Αθήνα 206 Περιεχόµενα Το σύνολο των πραγµατικών αριθµών. Φυσικοί, ακέραιοι και ϱητοί αριθµοί.......................
«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»
1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Η εργασία αυτή αποτελείται από δύο µέρη. Στο πρώτο µέρος ορίζεται η έννοια των θετικών
1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»
1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Η εργασία αυτή γράφτηκε µε αφορµή την κυκλικότητα που παρατηρείται στο σχολικό
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
Δύο λόγια από τη συγγραφέα
Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου
R={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ
ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο
Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.
Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα
ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη
Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς
Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια
< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
mail:
Λογισμός Ι - Τμήμα 1Β Κ. Δασκαλογιάννης Γραφείο 18, 3ος όροφος ΣΘΕ τηλ: 2310-998074 mail: daskalo@math.auth.gr ιστοσελίδα: users.auth.gr/daskalo 2014 ΛΟΓΙΣΜΟΣ CALCULUS (Διαφορικός Λογισμός, Απειροστικός
Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Οι πραγµατικοί αριθµοί
Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα
Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις
ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς
(GNU-Linux, FreeBSD, MacOsX, QNX
1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Εισαγωγή στην Τοπολογία
Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, 10-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την συμμετρική ιδιότητα της Ιδιότητας Supremum. Η ΙΔΙΟΤΗΤΑ INFIMUM. Κάθε μη-κενό και κάτω φραγμένο σύνολο έχει μέγιστο κάτω φράγμα.
Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 27 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΙΣΑΓΩΓΗ Ο απειροστικός λογισμός αποτελείται από το διαφορικό και ολοκληρωτικό
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.
Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Στις σύντομες σημειώσεις που ακολουθούν θα περιγράψουμε την αξιωματική θεμελίωση των
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Δοκιμασίες πολλαπλών επιλογών
Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι
ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ
ΑΝΑΛΥΣΗ ΣΕ 39 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. l 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο l έχει την εξής ιδιότητα: l x για κάθε x > 0. Τότε l 0. Απόδειξη. Για να
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,
I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +
Κεφάλαιο 1. Αριθμοί. 1.1 Σύνολα
Κεφάλαιο 1 Αριθμοί Το εισαγωγικό αυτό κεφάλαιο εξυπηρετεί δύο αλληλοκαλυπτόμενους σκοπούς. Πρώτον, θυμίζει στον αναγνώστη πολλές από τις γνώσεις που είναι προαπαιτούμενες σε ένα μάθημα Λογισμού συναρτήσεων
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο
4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Πράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )
ΜΑΘΗΜΑΤΙΚΑ α x +β
ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Κυριάκος Γ. Μαυρίδης ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΕΡΙΕΧΟΜΕΝΑ. ΣΥΝΟΛΑ.... ΣΥΝΑΡΤΗΣΕΙΣ...9 3. ΑΚΟΛΟΥΘΙΕΣ... 9 4. ΣΕΙΡΕΣ... 33 5. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ... 43 6. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ... 57 7. ΠΑΡΑΓΩΓΟΣ
1 Το ϑεώρηµα του Rademacher
Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.
Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.
Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για
KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.
Ερωτήσεις επί των ρητών αριθµών
Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα
Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.
Πανεπιστηµιο Αιγαιου Τµηµα Μαθηµατικων 8 200 Καρλοβασι Σαµος Καρλόβασι 09/02/2012 Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. 1. Απαντήστε µε α(αλήθεια)
Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,
Εισαγωγή στην Τοπολογία
Ενότητα: Συνθήκες αριθµησιµότητας Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ο κεφάλαιο: Πραγματικοί αριθμοί ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4
Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διάλεξη 1 - Σημειώσεις 1
Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί
ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε
Εισαγωγή στην Τοπολογία
Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Η Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να
7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ
1 7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ ΘΕΩΡΙΑ 1. Κανόνας πολλαπλασιασµού : Το γινόµενο δύο οµοσήµων αριθµών είναι θετικός ενώ το γινόµενο δύο ετεροσήµων είναι αρνητικός ηλαδή (+) (+) = + και ( ) ( ) = + Ενώ (+) (
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )