2.html Οι βασικοί παράμετροι που επηρεάζουν την σύνθετη αντίσταση είναι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2.html Οι βασικοί παράμετροι που επηρεάζουν την σύνθετη αντίσταση είναι"

Transcript

1 Καλώδια... Γιατί διαφορετικά καλώδια, ακόμα και αν είναι κατασκευασμένα από το ίδιο υλικό έχουν διαφορετικό χαρακτήρα; Τι κάνει ένα καλώδιο κατάλληλο για την μεταφορά ενός σήματος; Βάση ποιων χαρακτηριστικών πρέπει να αγοράζουμε ένα καλώδιο; Τα εξωτικά υλικά προσφέρουν τίποτα στην κατασκευή ενός καλωδίου; Το βασικό ηλεκτρικό χαρακτηριστικό ενός αγωγού είναι η σύνθετη αντίσταση (εμπέδηση) που συμβολίζετε με το γράμμα Ζ. Η εμπέδηση είναι μιγαδικός αριθμός δηλαδή αποτελείτε από δύο μέρη το πραγματικό και το φανταστικό. Το πραγματικό δηλώνει την ωμική αντίσταση και το φανταστικό την χωρητική/αυτεπαγωγική αντίσταση. Η πραγματική αντίσταση είναι υπεύθυνη για τον υποβιβασμό της τάσης του σήματος ενώ η φανταστική ευθύνεται κυρίως για τις μεταβολές της φάσης του σήματος. Ας ξεκινήσουμε από το ομοαξονικό καλώδιο που είναι και η πιο εύκολη για μελέτη περίπτωση. Το ομοαξονικό καλώδιο αποτελείτε από έναν εσωτερικό αγωγό που περιβάλλετε από ένα υλικό που δεν επιτρέπει την διέλευση του ρεύματος, και γύρω από αυτό υπάρχει ένα αγώγιμο πλέγμα ( συνήθως από το ίδιο υλικό με τον αγωγό). Το πλέγμα περιβάλλετε κι αυτό με την σειρά του από διηλεκτρικό υλικό. Η περίπτωση του ομοαξονικού καλωδίου είναι η πιο εύκολη για μελέτη. Η σύνθετη αντίσταση του ομοαξονικού καλωδίου καθορίζετε περισσότερο από τα γεωμετρικά χαρακτηριστικά του παρά από το υλικό κατασκευής. Για τις ανάγκες της συνέχεια του άρθρου θα χρησιμοποιήσουμε την παρακάτω εφαρμογή (java applet) το οποίο μπορεί να υπολογίζει τα βασικά ηλεκτρικά χαρακτηριστικά του ομοαξονικού καλωδίου. 2.html Οι βασικοί παράμετροι που επηρεάζουν την σύνθετη αντίσταση είναι 1. η ακτίνα του εσωτερικού αγωγού (r) 2. η ακτίνα του εξωτερικού αγωγού (R) 3. η συχνότητα του σήματος (f) 4. η ειδική αντίσταση του αγωγού (ρs) 5. η ηλεκτρική διαπερατότητα του διηλεκτρικού (εr) 6. η αγωγιμότητα του διηλεκτρικού (σ)

2 Ας χρησιμοποιήσουμε λοιπόν ένα παράδειγμα. Χάλκινος αγωγός ( ρ=1, Ω. m), μήκους 1m, με ακτίνα εξωτερικού αγωγού R=10mm, ακτίνα εσωτερικού αγωγού r=1,5mm, ο οποίος μεταφέρει ηχητική πληροφορία (20Hz<f<20Khz). Το διηλεκτρικό μας έχει μηδενική αγωγιμότητα (σ=0s) και η ηλεκτρική διαπερατότητα του διηλεκτρικού έχει μία τυπική τιμή (εr=2,3 όσο περίπου τα έλαια στους πυκνωτές ελαίου). Χρησιμοποιώντας την προσομοίωση θα πάρουμε ότι η συνθέτη αντίσταση του καλωδίου στα 20KHz είναι Zο= (75,008 + j3,532)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (76,508 + j15,485)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (107,897 + j77,641)ω. Από τις μετρήσεις αυτές λοιπόν διαπιστώνουμε τα ακόλουθα: A. στο μεγαλύτερο μέρος του φάσματος η ωμική αντίσταση του καλωδίου παραμένει σταθερή περίπου στα 75Ω. B. κάτω από τα 1000Ηz αρχίζει και αυξάνεται σημαντικά η ωμική αντίσταση του καλωδίου (στα 20Ηz η τιμή της ωμικής αντίστασης θα είναι κατά 50% αυξημένη σε σχέση με τα 75Ω) που σημαίνει πρακτικά ότι το σήμα θα είναι πιο εξασθενημένο στις χαμηλές συχνότητες. C. Το φανταστικό μέρος της εμπέδησης συνέχεια αυξάνετε όσο θα ελαττώνετε η συχνότητα (από 3,532 στα 20Khz θα φτάσει στα 77,641 στα 20Hz). Αυτό θα έχει σαν αποτέλεσμα η φάση του σήματος από περίπου φ=2,65 ο στα 20KΗz να γίνει φ=35,74 ο στα 20Ηz. Ας αλλάξουμε τώρα το υλικό του καλωδίου και ας πάρουμε ένα καλώδιο από ασήμι (ρ=1,4ω. m), και ας επαναλάβουμε τις μετρήσεις. Χρησιμοποιώντας την προσομοίωση θα πάρουμε ότι η συνθέτη αντίσταση του καλωδίου στα 20KHz είναι Zο= (74,992 + j3,182)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (76,222 + j14,003)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (104,206 + j72,424)ω. Ποιοτικά λοιπόν έχουμε περίπου τα ίδια αποτελέσματα. Τα αποτελέσματα δεν θα αλλάξουν ποιοτικά αν χρησιμοποιήσουμε και άλλα μέταλλα (αλουμίνιο, χρυσός κλπ κλπ) σαν υλικό του αγωγού.

3 Ας αλλάξουμε τώρα τις διαμέτρους των αγωγών, και ας κάνουμε την διάμετρο του εσωτερικού αγωγού r=5mm, και ας ξανακάνουμε τις ίδιες μετρήσεις. Η συνθέτη αντίσταση του καλωδίου στα 20KHz είναι Zο= (27,439 + j1,384)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (28,064 + j6,052)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (40,421 + j29,713)ω. Διαπιστώνουμε ότι ισχύουν περίπου τα ίδια για την μεταβολή της ωμικής αντίστασης (σχεδόν σταθερή μέχρι το 1KHz και από εκεί και πέρα αύξηση της τιμής της κατά περίπου 50%), αλλά και για την μεταβολή της φάσης (πάλι στα 20Hz η διαφορά της φάσης θα είναι περίπου φ=36,31 ο ενώ στα 20Hz θα είναι φ=2,88 ο ). Aς αυξήσουμε τώρα και την ακτίνα του εξωτερικού αγωγού R=20mm. Επαναλαμβάνοντας το ίδιο σετ μετρήσεων θα διαπιστώσουμε αξιοσημείωτες διαφορές. Η ωμική αντίσταση μεταβάλλετε πλέον λιγότερο από τα 20KHz μέχρι τα 20Hz (η μεταβολή είναι περίπου 16% σε σχέση με το 50% που είχαμε στις προηγούμενες περιπτώσεις), ενώ και η μεταβολή της φάσης είναι μικρότερη (από φ=1,21 ο μέχρι φ=26,56 ο ). Άρα από καθαρής ηλεκτρικής απόψεως λοιπόν δεν παίζει ρόλο τόσο το υλικό κατασκευής του ομοαξονικού καλωδίου όσο τα γεωμετρικά χαρακτηριστικά του. Ας εξετάσουμε τώρα την περίπτωση δύο παράλληλων αγωγών. Πάλι θα χρησιμοποιήσουμε ένα java applet που βρίσκετε στην διεύθυνση 2.html Στο σύστημα των δύο παράλληλων αγωγών τα βασικά χαρακτηριστικά είναι, 7. η διάμετρος των αγωγών (d) 8. η απόσταση μεταξύ των αγωγών (D) 9. η συχνότητα του σήματος (f) 10. η ειδική αντίσταση του αγωγού (ρs) 11. η ηλεκτρική διαπερατότητα του διηλεκτρικού (εr) 12. η αγωγιμότητα του διηλεκτρικού (σ)

4 Ας χρησιμοποιήσουμε λοιπόν ένα παράδειγμα. Χάλκινος αγωγός ( ρ=1, Ω. m), μήκους 1m, με διάμετρο d=5mm, απόσταση μεταξύ των αγωγών D=10mm, ο οποίος μεταφέρει ηχητική πληροφορία (20Hz<f<20Khz). Το μονωτικό των αγωγών έχει μηδενική αγωγιμότητα (σ=0s) και η ηλεκτρική διαπερατότητα του διηλεκτρικού έχει μία τυπική τιμή (εr=2,3 όσο περίπου τα έλαια στους πυκνωτές ελαίου). Χρησιμοποιώντας την προσομοίωση θα πάρουμε ότι η συνθέτη αντίσταση του καλωδίου στα 20KHz είναι Zο= (104,199 + j3,694)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (105,405 + j16,329)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (136,914 + j88,891)ω. Ας αλλάξουμε τώρα το υλικό του καλωδίου και ας πάρουμε ένα καλώδιο από ασήμι (ρ=1,4ω. m), και ας επαναλάβουμε τις μετρήσεις. Χρησιμοποιώντας την προσομοίωση θα πάρουμε ότι η συνθέτη αντίσταση του καλωδίου στα 20KHz είναι Zο= (104,186 + j3,328)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (105,172 + j14,743)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (132,866 + j82,520)ω. Παρατηρούμε κι εδώ (όπως και σε ένα ομοαξονικό καλώδιο) ότι η τιμή της ωμικής αντίστασης παραμένει περίπου σταθερή μέχρι το 1KHz και από κει και πέρα αυξάνει. Όσο για την μεταβολή της φάσης είναι παρόμοια με αυτή στο ομοαξονικό καλώδιο. Ας πλησιάσουμε τους αγωγούς μεταξύ τους, ώστε να τους χωρίζει μόνο η μόνωση (D=5.5mm). Η εμπέδηση του χάλκινου αγωγού τότε θα γίνει στα 20KHz Zο= (35,265 + j3,675)ω. Επαναλαμβάνουμε την ίδια μέτρηση στο 1 KHz και θα έχουμε Zο= (38,213 + j15,170)ω. Τέλος επαναλαμβάνουμε την μέτρηση στα 20Hz και λαμβάνω Zο= (68,993 + j59,413)ω. Διαπιστώνουμε ότι η μεταβολή της τιμής της ωμικής αντίστασης αυξάνεται. Όσο για την μεταβολή της φάσης αυτή είναι πιο μεγάλη σαν τιμή αλλά μικρότερη ως ποσοστό. Άρα σε αυτή την περίπτωση καλό θα είναι να ακολουθήσουμε την μέση οδό. Οι δύο αγωγοί θα πρέπει να είναι όχι σε επαφή αλλά ούτε και σε μεγάλη απόσταση μεταξύ τους.

5 Ας εξετάσουμε τέλος ένα ομοαξονικό καλώδιο κατά την μεταφορά του ψηφιακού σήματος (από f=32khz μέχρι f=192khz). Παρατηρούμε ότι ανεξαρτήτως υλικού η τιμή της ωμικής αντίστασης είναι αξιοσημείωτα σταθερή (την τιμή μπορούμε να την ρυθμίσουμε αλλάζοντας τις ακτίνες των αγωγών. Για να πετύχουμε το στάνταρ των 75Ω μπορούμε να βάλουμε r=1,5mm και R=10mm). Η μεταβολή της φάσης από την άλλη είναι ελάχιστη, ανεξαρτήτως του υλικού (ασήμι, χαλκός ή αλουμίνιο). Άρα σε αυτή την περίπτωση τον κύριο ρόλο παίζουν όχι τα ηλεκτρικά χαρακτηριστικά του καλωδίου, αλλά η σωστή γεωμετρία και η καλή ποιότητα κατασκευής. Γιατί όμως υπάρχουν διαφορές μεταξύ των καλωδίων; Η απάντηση είναι ότι πρέπει να κοιτάξουμε λίγο πέρα από τα καθαρά ηλεκτρικά χαρακτηριστικά. Υπάρχουν 4 βασικοί παράγοντες (κατά την άποψή μου) Α) η οξείδωση του καλωδίου Όλοι οι μεταλλικοί αγωγοί (πλην αυτών που είναι από χρυσό ή κάποια συγκεκριμένα μεταλλικά κράματα) οξειδώνονται με το πέρασμα του χρόνου. Η οξείδωση αυτή πολλές φορές δεν είναι ορατή με γυμνό μάτι, και συνήθως επηρεάζει την εξωτερική επιφάνεια του μετάλλου. Τα οξείδια των μετάλλων συμπεριφέρονται τις περισσότερες φορές διαφορετικά από το ίδιο το μέταλλο (τα οξείδια του χαλκού είναι λιγότερο αγώγιμα από τον χαλκό, ενώ του ασημιού έχουν περίπου την ίδια αγωγιμότητα με το ασήμι) Β) το επιδερμικό φαινόμενο Έχει αποδειχθεί ότι η πυκνότητα του ρεύματος στο εσωτερικό ενός αγωγού είναι μέγιστη στην επιφάνεια του αγωγού και ελαχιστοποιείται καθώς πηγαίνουμε προς το κέντρο του. Άρα το εξωτερικό του αγωγού είναι πιο κρίσιμο για την μεταφορά του σήματος. Αυτό αν συνδυαστεί με τα όσα είπαμε παραπάνω για την οξείδωση του εξωτερικού τμήματος του αγωγού μπορούμε να καταλάβουμε την σπουδαιότητα της οξείδωσης, μιας που το οξειδωμένο τμήμα του αγωγού θα μεταφέρει το περισσότερο σήμα. Το φαινόμενο αυτό όμως έχει να κάνει κυρίως με τις συχνότητα του σήματος που μεταφέρει το καλώδιο, και με την γεωμετρία του καλωδίου (ένα ribbon ic θα «υποφέρει» περισσότερο από ένα συμβατικό). Για αυτό είναι πιο κρίσιμο στα ψηφιακά καλώδια που μπορεί να χρειαστεί να μεταφέρουν σήματα μεγάλης συχνότητας (π.χ. 192kHz) και ουσιαστικά δεν επηρεάζει τα καλώδια που θα μεταφέρουν αναλογικό ηχητικό σήμα.

6 Γ) η καθαρότητα του αγωγού ατέλειες μεταλλικού πλέγματος Τα μέταλλα αναλόγως της κατεργασίας που έχουν υποστεί έχουν διάφορες προσμίξεις μέσα τους. Οι προσμίξεις αυτές παίζουν κρίσιμο ρόλο γιατί αλλοιώνουν τα ηλεκτρικά χαρακτηριστικά του αγωγού. Ρόλο παίζει όχι μόνο η ποσότητα των προσμίξεων αλλά και το είδος τους. Και κάτι που ελάχιστοι γνωρίζουν είναι ότι όλες οι ατέλειες του μεταλλικού πλέγματος με την πάροδο του χρόνου μετακινούνται στην επιφάνεια του αγωγού, κάτι που αν το συνδυάσουμε με το επιδερμικό φαινόμενο, δείχνει την κρισιμότητα αυτού του παράγοντα Δ) Ένας άλλος κρίσιμος παράγοντας που συχνά παραβλέπετε είναι η δημιουργία στάσιμων κυμάτων μέσα στο καλώδιο. Όλα τα καλώδια λειτουργούν ως γραμμές μεταφοράς. Κάθε γραμμή μεταφορά όμως θα πρέπει να τερματίζει στην χαρακτηριστική της εμπέδηση για να έχουμε σωστή λειτουργία. Δηλαδή η εμπέδηση του φορτίου θα πρέπει να είναι ίδια, ή καλύτερα παραπλήσια, με την εμπέδηση της γραμμής μεταφοράς (δηλ. του καλωδίου). Σε διαφορετική περίπτωση μπορεί να δημιουργηθούν στάσιμα κύματα στην γραμμή μεταφοράς. Το στάσιμο κύμα δημιουργείτε από την ανάκλαση του σήματος πίσω στην πηγή του. Η σύνθεση του κανονικού σήματος και του ανακλώμενου δημιουργούν το στάσιμο κύμα. Δυστυχώς όμως η εμπέδηση του φορτίου δεν είναι ποτέ ίση με αυτήν της γραμμής μεταφοράς (καλώδια). Πάντα θα υπάρχει μία διαφορά είτε στο πραγματικό είτε στο φανταστικό τμήμα της εμπέδησης (είχαμε πει ότι η εμπέδηση είναι μιγαδική και αποτελείτε από το πραγματικό ωμικό τμήμα και το φανταστικό χωρητικό ή επαγωγικό τμήμα ) Στάσιμο κύμα μπορεί να έχουμε όχι μόνο από την διαφορά της εμπέδησης μεταξύ πηγής φορτίου αλλά και λόγω κακής προσαρμογής της γραμμής μεταφοράς στο φορτίο. Η κακή προσαρμογή μπορεί να δημιουργήσει στάσιμα κύματα μικρότερου όμως πλάτους από την διαφορά των εμπεδήσεω (Για αυτό στα καλώδια πάντα θα πρέπει να έχουμε πολύ καλή επαφή του θυληκού με το αρσενικό βύσμα. Στα καλώδια ηχείων χρειάζεται είτε πολύ καλό σφίξιμο του γυμνού καλωδίου είτε πολύ καλά τοποθετημένα βύσματα) Τέλος στάσιμο κύμα μπορούμε να έχουμε (σε ακραίες περιπτώσεις) και λόγω της διαφοράς υλικού μεταξύ γραμμής μεταφοράς και ακροδεκτών. Γι αυτό και πάλι προσοχή στους ακροδέκτες σας. Καλό είναι να είναι από το ίδιο υλικό με το καλώδιο.

7 Τώρα το μέγεθος των στάσιμων κυμάτων σε μια γραμμή μεταφοράς προσδιορίζεται από το λόγο του μέγιστου ρεύματος προς το ελάχιστο ρεύμα της γραμμής ή της μέγιστης τάσης με την ελάχιστη τάση της γραμμής. Αυτοί οι λόγοι καλούνται SWR (standing wave ratio). SWR = Imax/Imin ή αλλιώς SWR = Vmax/Vmin Μεγάλε τιμές του λόγου αυτού σημαίνει μεγάλη ανάκλαση του σήματος. Αν έχουμε σωστό τερματισμό δεν έχουμε στάσιμο κύμα. (τότε ο λόγος έχει τιμή SWR=0) Ο SWR μπορεί να υπολογιστεί αν γνωρίζουμε την εμπέδηση της γραμμής μεταφοράς και αυτή του φορτίου. SWR = Zi/Zl αν Zi>Zl ή SWR = Zl/Zi αν Zi<Zl (όπου Ζi η εμπέδηση της γραμμής μεταφοράς και Ζl αυτή του φορτίου) ΠΡΟΣΟΧΗ. Και τα δύο αυτά μεγέθη (Zi και Zl ) είναι μιγαδικά. Ο λόγος τώρα της τάσης του σήματος προς την ανακλώμενη τάση ονομάζεται συντελεστής ανάκλασης και συμβολίζεται με R. To R λοιπόν είναι ίσο με: R=Vr/Vi (όπου Vr η ανακλώμενη τάση και Vi η τάση του σήματος.) Αν η εμπέδηση του φορτίου είναι ίδια με αυτή της γραμμής μεταφοράς τότε έχουμε R=0, Ενώ αν έχω πλήρη ανάκλαση τότε R=1. Ο SWR μπορεί να υπολογιστεί συναρτήσει του R. Έτσι έχουμε SWR = (1 + R)/(1 R), Ενώ το R μπορεί να υπολογιστεί συναρτήσει των Zl και Ζi. R = (Zl Zi)/(Zl + Zi) H πρακτική σημασία του SWR, είναι ότι μας δίνει μια σχετική ένδειξη της ισχύος που χάνεται στην γραμμή μεταφοράς. Π.χ. για SWR=1 έχω

8 απώλειες 0%, για SWR=1.5 απώλειες 4% για SWR<2 απώλεις λιγότερο από 10%. Από εκεί και πάνω οι τιμές των απωλειών αυξάνονται δραματικά. Στα ψηφιακά interconnect καλώδια (AES EBU και coaxial) μπορούμε να περιορίσουμε τις απώλειες γιατί εκεί οι γραμμές μεταφοράς έχουν σταθερή τιμή (75Ω για τα coaxial και 110Ω για τα AES/EBU) στο πραγματικό τμήμα τη εμπέδησης. Με κάποιες ενδιάμεσες τιμές στο φανταστικό τμήμα μπορούμε να έχουμε καλύτερη συμπεριφορά του καλωδίου. Γι αυτό και δυσκολότερα μπορούμε να εντοπίσουμε διαφορές σε ψηφιακά καλώδια παρά σε αυτά που μεταφέρουν αναλογικό σήμα. Στα αναλογικά καλώδια όμως δεν υπάρχει κάποια σταθερή τιμή της εμπέδησης και έτσι λοιπόν το «ταίριασμα» του καλωδίου είναι περισσότερο θέμα τύχης Υπάρχουν ορισμένα καλώδια τα οποία έχουν ακραίες εμπέδησης και τα οποία δύσκολα θα ταιριάξουν με ένα φορτίο, ενώ υπάρχουν κάποια περίεργα φορτία που απαιτούν περίεργα καλώδια. Στην πράξη μονό με δοκιμές μπορούμε να βρούμε το κατάλληλο καλώδιο, αφού τόσο οι κατασκευαστές των ηχητικών συσκευών όσο και των καλωδίων αποφεύγουν να δίνουν πραγματικές τιμές εμπεδήσεων. Συμπεράσματα Άρα αυτό που θα πρέπει να προσέχουμε σε ένα ομοαξονικό καλώδιο για την μεταφορά αναλογικού και ψηφιακού σήματος είναι: α) η ποιότητα της κατασκευής. β) η σωστή γεωμετρία. γ) η ποιότητα του υλικού του αγωγού. Επομένως δεν υπάρχει λόγος να επενδύουμε τεράστια ποσά σε καλώδια απλά γιατί είναι από εξωτικά υλικά ή έχουν εξωφρενικές καθαρότητες. Αρκεί ένα καλά κατασκευασμένο καλώδιο από χαλκό. Μία κακή κόλληση, ή ένα εσωτερικό σπάσιμο του υλικού που δεν μπορεί να φανεί συνήθως με γυμνό μάτι, μπορεί να επηρεάσουν τον ήχο περισσότερο απ ότι το υλικό κατασκευής του καλωδίου.

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018

Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Επίλυση ειδικών μορφών ΣΔΕ

Επίλυση ειδικών μορφών ΣΔΕ 15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Μεγέθη ταλάντωσης Το απλό εκκρεμές

Μεγέθη ταλάντωσης Το απλό εκκρεμές Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. 2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

Εξωτερικά υδραγωγεία: Αρχές χάραξης

Εξωτερικά υδραγωγεία: Αρχές χάραξης στικά Υδραυλικά Έργα Εξωτερικά υδραγωγεία: ρχές χάραξης Δημήτρης Κουτσογιάννης & νδρέας Ευστρατιάδης Τομέας Υδατικών όρων Εθνικό Μετσόβιο ολυτεχνείο Εξωτερικά υδραγωγεία υπό πίεση: Χάραξη σε οριζοντιογραφία

Διαβάστε περισσότερα

Το εγχειρίδιο του καλού κηπουρού

Το εγχειρίδιο του καλού κηπουρού Το εγχειρίδιο του καλού κηπουρού 1. Φροντίδα των φυτών Αφού αποφάσισες να φυτέψεις πρέπει να είσαι έτοιμος να ασχοληθείς με τα φυτά σου και να παρακολουθείς τις ανάγκες τους. Θα πρέπει να ποτίζεις όποτε

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης 2 ιά ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ Δρ Αμπαρτζάκη Μαρία, Παιδαγωγικό

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

«Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας»

«Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Κατεύθυνση Εφαρμοσμένης Φυσικής «Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας»

Διαβάστε περισσότερα

3. ίνεται ότι το πλάτος µιας εξαναγκασµένης µηχανικής ταλάντωσης µε απόσβεση υπό την επίδραση µιάς εξωτερικής περιοδικής δύναµης είναι µέγιστο.

3. ίνεται ότι το πλάτος µιας εξαναγκασµένης µηχανικής ταλάντωσης µε απόσβεση υπό την επίδραση µιάς εξωτερικής περιοδικής δύναµης είναι µέγιστο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις 602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Βουδούρη Καλλιρρόη ΙΑΓ%ΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑ:.. ΘΕΜΑ Α Α. Να ση)ειώσετε στο γρα1τό σας δί1λα α1ό τον

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Δυστυχώς είναι μια πραγματικότητα της ζωής ότι αν διατηρείτε στο σπίτι σας φυτά, υπάρχει πάντα η πιθανότητα να υποστούν ζημίες από βλαβερούς

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27 ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας σε Η/Μ εγκαταστάσεις με βελτίωση του συντελεστή ισχύος. Δημήτρης Αλ. Κατσαπρακάκης Αιολική Γη Α.Ε.

Εξοικονόμηση ενέργειας σε Η/Μ εγκαταστάσεις με βελτίωση του συντελεστή ισχύος. Δημήτρης Αλ. Κατσαπρακάκης Αιολική Γη Α.Ε. Εξοικονόμηση ενέργειας σε Η/Μ εγκαταστάσεις με βελτίωση του συντελεστή ισχύος Δημήτρης Αλ. Κατσαπρακάκης Αιολική Γη Α.Ε. www.aiolikigi.gr Εισαγωγή Οι εταιρείες παραγωγής και διανομής τροφοδοτούν τους καταναλωτές

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

(20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ

(20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ (20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Σταδιακές κατακευές: από μερικά αποτελέματα ε περιότερα. Το ημείο όπου έχουμε φθάει προφέρεται για μια μικρή ανακόπηη. Το κεπτικό μας ήταν εξ αρχής ότι

Διαβάστε περισσότερα

(7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα»

(7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα» (7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα» Σύντομα προλεγόμενα: πού να ψάξουμε για δραστικούς αλγορίθμους; Θα αρχίσουμε από αυτό το κεφάλαιο την ξενάγησή

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Επίσης, καθώς το κρύο θα υποχωρεί, βγάλτε πάλι έξω όσα φυτά μεταφέρατε στο σπίτι για να τα προστατέψατε από την παγωνιά.

Επίσης, καθώς το κρύο θα υποχωρεί, βγάλτε πάλι έξω όσα φυτά μεταφέρατε στο σπίτι για να τα προστατέψατε από την παγωνιά. Μάρτιος Καλό μήνα και καλή άνοιξη! Μπορεί ο Φεβρουάριος να μας τα χάλασε αλλά τελείωσε κι αυτός. Ότι κι αν φέρει ο Μάρτης ελπίζουμε να μην περιλαμβάνει ούτε χιόνι ούτε παγωνιά, φτάνει για φέτος και το

Διαβάστε περισσότερα

23/2/07 Sleep out Πλατεία Κλαυθμώνος

23/2/07 Sleep out Πλατεία Κλαυθμώνος 23/2/07 Sleep out Πλατεία Κλαυθμώνος Μια βραδιά στο λούκι με τους αστέγους «Έχετε ποτέ σκεφτεί να κοιμηθείτε μια χειμωνιάτικη νύχτα στο δρόμο;» Με αυτό το ερώτημα απευθύναμε και φέτος την πρόσκληση στους

Διαβάστε περισσότερα

To παιχνίδι την Αρχαία Ελλάδα

To παιχνίδι την Αρχαία Ελλάδα To παιχνίδι την Αρχαία Ελλάδα Μέχρι τα επτά του χρόνια το παιδί έμενε στο σπίτι, όπου έπαιζε διάφορα παιχνίδια. Ο Πλάτων κι ο Αριστοτέλης συμβούλευαν τους γονείς να αφήνουν τα παιδιά τους να διασκεδάζουν

Διαβάστε περισσότερα

G περιέχει τουλάχιστον μία ακμή στο S. spanning tree στο γράφημα G.

G περιέχει τουλάχιστον μία ακμή στο S. spanning tree στο γράφημα G. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 2014-2015 Λύσεις 3ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ Eugene T. GENDLIN University of Chicago, U.S.A Αυτό το άρθρο είναι μια αναθεωρημένη έκδοση της πλήρους

Διαβάστε περισσότερα

Επιλέγοντας τις κατάλληλες γλάστρες

Επιλέγοντας τις κατάλληλες γλάστρες Επιλέγοντας τις κατάλληλες γλάστρες Το τι γλάστρες θα χρησιμοποιήσετε εξαρτάται κυρίως από το πορτοφόλι σας αλλά και το προσωπικό σας γούστο. Οι επιλογές σας είναι αμέτρητες, τόσο σε ποιότητες όσο και

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων Περίληψη Κεφαλαίου: Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά χαρακτηριστικά του μείγματος Marketing (Μ.Κ.Τ.), στο πλαίσιο της εύρυθμης λειτουργίας

Διαβάστε περισσότερα