Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)"

Transcript

1 Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

2 Σελίδα 2 Εισαγωγή: Η θερμομόρφωση (Thermoforming) είναι τεχνική κατά την οποία διεξάγεται μετατροπή του πλαστικού φύλλου σε ένα μαλακό, εύκαμπτο προϊόν μέσω της θέρμανσης, αποκτώντας έτσι την δυνατότητα διαμόρφωσης του υλικού σε διάφορα άκαμπτα σχήματα. Η θερμομόρφωση έχει αρκετές παραλλαγές διαμόρφωσης κατά τη χύτευση, είτε με πίεση, είτε με κενό, είτε με καλούπι. Το πρώτο υλικό όλων των μεθόδων έχει σχήμα φύλλου. Το υλικό αυτό θερμαίνεται, έως ότου γίνει μαλακό, και εν συνεχεία του ασκείται πίεση σε καλούπι, πιο ψυχρό από αυτό. Το φύλλο με εφαρμογή πίεσης μένει σταθερό στο καλούπι, μέχρι να γίνει άκαμπτο. Το σχηματισμένο μέρος τότε απομακρύνεται από το καλούπι και ξεχωρίζεται από το πλαστικό που το περιβάλλει. Βέβαια υπάρχουν και πολλές άλλες παραλλαγές της μεθόδου που ακολουθούν εντελώς διαφορετική διαδικασία θερμομόρφωσης. Ο εξοπλισμός που χρησιμοποιείται ποικίλει από έναν απλό φούρνο μέχρι μια περίπλοκη και αυτοματοποιημένη μηχανή. Το θερμοπλαστικό φύλλο είναι το σημαντικότερο στοιχείο σε όλη τη διαδικασία της θερμομόρφωσης. Κατά τη μορφοποίηση, το φύλλο μετατρέπεται σε χρήσιμο προϊόν. Η μοριακή δομή του φύλλου είναι καθοριστικής σημασίας κατά τη διαδικασία της θερμομόρφωσης αλλά και για την ποιότητα του τελικού προϊόντος. Μερικά από τα πιο κοινά υλικά που χρησιμοποιούνται είναι το Πολυστυρένιο (PS), το Πολυστυρένιο μεγάλης σκληρότητας (HIPS), το Πολυμερές ABS, το Χαμηλής και Υψηλής Πυκνότητας Πολυαιθυλένιο (LDPE & HPDE), το Πολυπροπυλένιο (PP) και το Πολυβινυλοχλωρίδιο (PVC). Σκοπός Εργαστηριακής Άσκησης: H κατανόηση της τεχνικής και των διαφόρων παραλλαγών της καθώς επίσης και η εξοικείωση των φοιτητών με τη μηχανή θερμομόρφωσης που υπάρχει στο τμήμα ΜΜΚ (Thermoforming Centre 911) Εργαστηριακή Διαδικασία: Εκτέλεση τριών διαφορετικών παραλλαγών τεχνικών θερμομόρφωσης στη μηχανή Thermoforming centre 911. [α] Διαμόρφωση με κενό (Vacuum forming) [β] Δημιουργία Θόλου (Dome Blowing) [γ] Χύτευση με Έγχυση (Injection Moulding) ** Ακολουθεί αναλυτική καθοδήγηση βημάτων για την εκτέλεση της κάθε τεχνικής

3 Σελίδα 3 [α] ΔΙΑΜΟΡΦΩΣΗ ΜΕ ΚΕΝΟ (VACUUM FORMING) Κατά τη διαμόρφωση σε κενό χρησιμοποιείται κοίλο καλούπι και διεξάγεται απομάκρυνση του αέρα ανάμεσα στο καλούπι και στο φύλλο. Καθώς ο αέρας εκκενώνεται μεταξύ του καλουπιού και του φύλλου, η ατμοσφαιρική πίεση αναγκάζει το καυτό εύκαμπτο φύλλο να πάρει την μορφή του καλουπιού. [β] Εκκένωση αέρα μεταξύ καλουπιού και φύλλου ΚΑΛΟΥΠΙ [α] Θέρμανση πλαστικού φύλλου [γ] Μορφοποίηση πλαστικού φύλλου 1. Το καλούπι τοποθετείται πάνω στη βάση και σπρώχνοντας τον μοχλό (στο πλάι) προς τα πίσω η βάση μετακινείται προς τα κάτω 2. Άνοιγμα συστήματος από το γενικό διακόπτη (κίτρινο κουμπί) 3. Ανέβασμα τελάρου και τοποθέτηση προστατευτικού πλαστικού (ειδικό για θερμομόρφωση). Κλείσιμο και ασφάλιση τελάρου. 4. Τοποθέτηση των θερμαντικών στοιχείων (κόκκινο κάλυμμα) πάνω από το πλαστικό 5. Ενεργοποίηση και των δυο ζώνων θέρμανσης από VACUUM FORMING HEATER ZONE CONTROL 6. Με το πέρασμα 25 λεπτών, τα θερμαντικά στοιχεία (OVEN) σβήνουν και απομακρύνονται από το πλαστικό 7. Από MODE SELECTION γίνεται η επιλογή του «Vacuum Forming Vacuum» 8. Τράβηγμα μοχλού προς το μέρος του χειριστή για τν επίτευξη εκκένωσης αέρα μεταξύ καλουπιού και φύλλου πλαστικού. Αναμονή διάρκειας 1 λεπτού για να κρυώσει το καλούπι.

4 Σελίδα 4 9. Από MODE SELECTION γίνεται επιλογή του «Vacuum Forming Blow», επιτρέποντας την εισχώρηση αέρα ανάμεσα στο καλούπι και το φύλλο πλαστικού. 10. Αφαίρεση του καλουπιού από το όργανο και διαχωρισμός τελικού προϊόντος από το καλούπι 30 λεπτά μετά αφότου κρυώσει. [β] Δημιουργία Θόλου (Dome Blowing) Κατά τη διαδικασία αυτής της μεθόδου φύλλο πλαστικού αφού θερμανθεί κατάλληλα διογκώνεται και σχηματίζει θόλο κοιλότητα με τη βοήθεια θερμού πεπιεσμένου αέρα από το κάτω μέρος του φύλλου πλαστικού. Πεπιεσμένος Αέρας 1. Από δεξιά πλευρά της μηχανής: Από το MODE SELECTION επιλέγεται το OVEN και ρυθμίζεται η θερμοκρασία στους 160 o C. Αναμονή μέχρι ο φούρνος πάρει την προκαθορισμένη θερμοκρασία. 2. Τοποθέτηση φύλλου πλαστικού μέσα στο φούρνο (βρίσκεται στο κέντρο του οργάνου). Ανάλογα με το πάχος του φύλλου που θα χρησιμοποιηθεί θα διαρκέσει και ο χρόνος θέρμανσης του. Για 1mm πάχος 4 λεπτά Χρήση 2 mm πάχος φύλλου Θέρμανση στο φούρνο για 8 λεπτά. 3. Τοποθέτηση καλουπιού κατασκευής θόλου στη βάση έχοντας τον δακτύλιο ανοιχτό προς τα πάνω. 4. Αφού περάσουν τα 8 λεπτά θέρμανσης του φύλλου πλαστικού, αυτό αφαιρείται από το φούρνο και με γρήγορες κινήσεις τοποθετείται πάνω στο καλούπι κατασκευής θόλου και επιλέγεται από το MODE SELECTION το «Dip coating dome blowing blow». (Για πιο γρήγορη και σωστή διαδικασία να γίνει από δυο άτομα)!!!προσοχη!!! Ο μοχλός στο πλάι πρέπει να είναι πάνω από την αρχή της διαδικασίας.

5 Σελίδα 5 [γ] Χύτευση με Έγχυση (Injection Moulding) Η χύτευση με έγχυση είναι ίσως η πιο διαδεδομένη κατεργασία μορφοποίησης για τα θερμοπλαστικά πολυμερή και προσφάτως και για ορισμένα θερμοσκληρυνόμενα. Mε τη μέθοδο αυτή, κόκκοι πολυμερούς που τροφοδοτούνται από μια χοάνη (hopper), συμπιέζονται από ένα έμβολο (ram) ή έναν κοχλία (screw) και θερμαίνονται μέχρι την τήξη τους. Το τήγμα αυτό στη συνέχεια ψεκάζεται υπό πίεση (έγχυση) στα ψυχρά τοιχώματα ενός καλουπιού. Εκεί, το πολυμερές αποψύχεται κάτω από τη θερμοκρασία υαλώδους μεταπτώσεως (Tg), το καλούπι μήτρα ανοίγει και λαμβάνεται το προϊόν. 1. Η βάση του φούρνου τοποθετείται ανάποδα, από την πλευρά δηλαδή που υπάρχει χώρος για τοποθέτηση της χοάνης. 2. Στη χοάνη τοποθετείται πολυμερές υπό την μορφή λεπτών κόκκων και τοποθετείται στο φούρνο για 30 περίπου λεπτά μέχρι την τήξη του. 3. Προετοιμασία καλουπιού και τοποθέτηση του στη πρέσα (υποδοχή με διάφανη πόρτα στο πλάι δεξιά της μηχανής) 4. Αφού το πολυμερές μετατραπεί σε τήγμα η χοάνη τοποθετείται στο κατάλληλο σημείο της πρέσας και από το EXTRUSION/INECTION MOULDING & PRESS FORMING ενεργοποιείται το πιστόνι της πρέσας με την επιλογή RAM DOWN. 5. Αφού το τήγμα πληρώσει το καλούπι τερματίζεται η διαδικασία. Ακολουθεί αναμονή μερικών λεπτών μέχρι την ψύξη του υλικού και ανοίγεται το καλούπι.

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018

Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

14 Φεβρουαρίου 2014, Βόλος

14 Φεβρουαρίου 2014, Βόλος ιαφορικές Εξισώσεις Εισαγωγή Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 14 Φεβρουαρίου 2014, Βόλος ιαδικαστικά Θέματα Ο τελικός βαθμός προτείνω να υπολογισθεί

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών

ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών 2013 ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακές Ασκήσεις Διδάσκουσα: Δρ. Θεοδώρα Κρασιά-Χριστοφόρου krasia@ucy.ac.cy Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ ΙΣΤΟΡΙΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΜΕΣΟΓΕΙΟΥ ΜΑΘΗΤΡΙΕΣ ΤΟΥ Β2 ΠΕΤΡΑ ΠΕΤΣΟΥ ΔΕΣΠΟΙΝΑ ΜΠΟΖΙΝΗ ΜΑΡΙΑ ΧΡΥΣΟΣΤΟΜΙΔΟΥ Yπεύθυνοι καθηγητές Μπουρμπούλιας Βασίλης - φιλόλογος Τσατσούλα Μαρία - φυσικός 1 Η ΜΕΣΟΓΕΙΟΣ: Η Μεσόγειος

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Σόμπα pellet Αέρος Mod.8 Mod.10 Mod.12

Σόμπα pellet Αέρος Mod.8 Mod.10 Mod.12 Σόμπα pellet Αέρος Mod.8 Mod.10 Mod.12 Οδηγίες εγκατάστασης (Μετάφραση από το πρωτότυπο) Το φυλλάδιο οδηγιών αποτελεί αναπόσπαστο τμήμα του προϊόντος. Διαβάστε προσεκτικά τις οδηγίες πριν από την εγκατάσταση

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1 έως 1.3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Το εγχειρίδιο του καλού κηπουρού

Το εγχειρίδιο του καλού κηπουρού Το εγχειρίδιο του καλού κηπουρού 1. Φροντίδα των φυτών Αφού αποφάσισες να φυτέψεις πρέπει να είσαι έτοιμος να ασχοληθείς με τα φυτά σου και να παρακολουθείς τις ανάγκες τους. Θα πρέπει να ποτίζεις όποτε

Διαβάστε περισσότερα

ΜΜΚ 456: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών

ΜΜΚ 456: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών 2019 ΜΜΚ 456: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακές Ασκήσεις Διδάσκουσα: Δρ. Θεοδώρα Κρασιά-Χριστοφόρου krasia@ucy.ac.cy Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Πομπιέρη Βασιλεία, Δικηγόρος, LLM UCL Πτωχευτικό Δίκαιο Σημαντικότερες ρυθμίσεις σε προπτωχευτικό στάδιο. Εισαγωγή της διαδικασίας συνδιαλλαγής Σκοπός Η διάσωση και εξυγίανση

Διαβάστε περισσότερα

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. 2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις

Διαβάστε περισσότερα

Τερράριο. Ένας μικρός γυάλινος κήπος

Τερράριο. Ένας μικρός γυάλινος κήπος Τερράριο Ένας μικρός γυάλινος κήπος Το τερράριο (terrarium) είναι ένας κήπος μέσα σε γυαλί. Η λέξη προήλθε από το λατινικό terra (γη) και την κατάληξη arium από παράφραση της λέξης aquarium (ενυδρείο)

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης 2 ιά ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ Δρ Αμπαρτζάκη Μαρία, Παιδαγωγικό

Διαβάστε περισσότερα

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ.

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ. ΕΓΚΥΚΛΙΟΣ 23 η ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 10 Ιουλίου 2013 ΥΠΟΥΡΓΕΙΟ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ ΣΥΝΤΟΝΙΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Αριθμ. Πρωτ. 153 ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΩΝ ΣΥΛΛΟΓΩΝ ΕΛΛΑΔΟΣ Α Θ Η Ν

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΑΣΦΑΛΕΙΑΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΓΚΛΗΜΑΤΩΝ. ΟΜΙΛΗΤΗΣ Υπαστυνόμος Α ΡΑΓΚΟΣ Κωνσταντίνος

ΔΙΕΥΘΥΝΣΗ ΑΣΦΑΛΕΙΑΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΓΚΛΗΜΑΤΩΝ. ΟΜΙΛΗΤΗΣ Υπαστυνόμος Α ΡΑΓΚΟΣ Κωνσταντίνος ΔΙΕΥΘΥΝΣΗ ΑΣΦΑΛΕΙΑΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΓΚΛΗΜΑΤΩΝ ΟΜΙΛΗΤΗΣ Υπαστυνόμος Α ΡΑΓΚΟΣ Κωνσταντίνος ΑΠΑΤΗ Αδίκημα διαχρονικό. Εξελίσσεται και μετασχηματίζεται. Η δημιουργία εκτεταμένου ηλεκτρονικού δικτύου

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα Πραγματοποιήθηκε με επιτυχία το προγραμματισμένο Εργαστήρι Χαρτογράφησης της Ελληνικής Σπηλαιολογικής Εταιρείας από τις 26 Νοεμβρίου

Διαβάστε περισσότερα

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Δυστυχώς είναι μια πραγματικότητα της ζωής ότι αν διατηρείτε στο σπίτι σας φυτά, υπάρχει πάντα η πιθανότητα να υποστούν ζημίες από βλαβερούς

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ηευρώπηστιςαρχέςτου15 ου αι.

ηευρώπηστιςαρχέςτου15 ου αι. ηευρώπηστιςαρχέςτου15 ου αι. Στα τέλη του 15 ου αι. υποχωρούν οι ενδημικές ασθένειες και αραιώνουν οι λιμοί επιτρέποντας έτσι την δημογραφική ανάπτυξη της γηραιάς Ηπείρου. Η σημαντικότερη όμως πρόοδος

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση

Αλγόριθμοι & Βελτιστοποίηση Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ. Διδακτική ενότητα

ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ. Διδακτική ενότητα ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΙΣΤΟΡΙΑ Α, Β, Γ, ΓΥΜΝΑΣΙΟΥ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ Διδακτική ενότητα Στόχος μας είναι: Να ανακαλύψετε τους παράγοντες που οδήγησαν στην εμφάνιση και

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Περίληψη Κεφαλαίου: Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και αφετέρου η σωστή εφαρμογή του Επιχειρηματικού

Διαβάστε περισσότερα

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΒΙΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΒΙΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΒΙΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Στις ερωτήσεις 1 5, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1.1.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

I. Η ΦΥΣΙΚΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ

I. Η ΦΥΣΙΚΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ I. Η ΦΥΣΙΚΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ Στο Κεφάλαιο αυτό παρουσιάζονται μόνο βασικά στοιχεία σχετιζόμενα με την πυρκαγιά στο εσωτερικό ενός κτιρίου (ενδο οικιακή), κύρια πηγή των οποίων αποτέλεσε η έκδοση Εργ. Ω.Σ./

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Βουδούρη Καλλιρρόη ΙΑΓ%ΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑ:.. ΘΕΜΑ Α Α. Να ση)ειώσετε στο γρα1τό σας δί1λα α1ό τον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Βουδούρη Καλλιρρόη Ριζηνίας 69 & Λασαίας 21 τηλ 2810313170 www.kmathisi.com ΙΑΓ%ΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑ:..

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Μεγέθη ταλάντωσης Το απλό εκκρεμές

Μεγέθη ταλάντωσης Το απλό εκκρεμές Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

συμπεριφοράς που θα παρατηρηθεί

συμπεριφοράς που θα παρατηρηθεί ιδακτικοί Στόχοι Αποσαφηνίζουν την αλλαγή της συμπεριφοράς που θα παρατηρηθεί στους μαθητές μετά το πέρας της διδασκαλίας 1 Κανόνες για τη διατύπωση των στόχων Ενδιαφέρει το γνωστικό αποτέλεσμα και όχι

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

VI. ΕΠΙΣΚΕΥΕΣ ΕΝΙΣΧΥΣΕΙΣ ΑΝΑ ΚΑΤΗΓΟΡΙΑ ΒΛΑΒΩΝ ΛΟΓΩ ΠΥΡΚΑΓΙΑΣ

VI. ΕΠΙΣΚΕΥΕΣ ΕΝΙΣΧΥΣΕΙΣ ΑΝΑ ΚΑΤΗΓΟΡΙΑ ΒΛΑΒΩΝ ΛΟΓΩ ΠΥΡΚΑΓΙΑΣ VI. ΕΠΙΣΚΕΥΕΣ ΕΝΙΣΧΥΣΕΙΣ ΑΝΑ ΚΑΤΗΓΟΡΙΑ ΒΛΑΒΩΝ ΛΟΓΩ ΠΥΡΚΑΓΙΑΣ Στο Κεφάλαιο αυτό γίνεται αντιστοίχιση των βλαβών λόγω πυρκαγιάς με προτεινόμενες μεθόδους επισκευών ενισχύσεων. Σημειώνεται ότι, σε γενικές

Διαβάστε περισσότερα

Το Ερευνητικό Μετρό. Το ερευνητικόό µμετρόό του ΕΙΕ ταξιδεύύει στις «γραµμµμέές» σχεδιασµμούύ και ανακάάλυψης φαρµμάάκων.

Το Ερευνητικό Μετρό. Το ερευνητικόό µμετρόό του ΕΙΕ ταξιδεύύει στις «γραµμµμέές» σχεδιασµμούύ και ανακάάλυψης φαρµμάάκων. Το Ερευνητικό Μετρό Το ερευνητικόό µμετρόό του ΕΙΕ ταξιδεύύει στις «γραµμµμέές» σχεδιασµμούύ και ανακάάλυψης φαρµμάάκων. Αθήήνα 2015 Πού συναντά*ε τους *ικροοργανισ*ούς; Παντού!!! Οι 2ιο γνωστές «κρυψώνες»

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις 602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη ΙΙ

Εισαγωγή στην Οικονομική Επιστήμη ΙΙ Εισαγωγή στην Οικονομική Επιστήμη ΙΙ Νικόλαος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2015-2016 Εαρινό Εξάμηνο 1/12 Ημέρες/ Ωρες ιδασκαλίας &

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

«Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης

«Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ «Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης 1 Ατμοσφαιρικός κύκλος της ρύπανσης Ως γνωστόν, οι ανθρωπογενείς εκπομπές ρύπων είναι υπεύθυνες για τα υψηλά επίπεδα ρύπανσης

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα