Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων
|
|
- Θωθ Κομνηνός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων Γεώργιος Παπανίκος Τμ. Εφ. Πληροφορικής, Πανεπιστήμιο Μακεδονίας Εγνατία 156, Θεσσαλονίκη Νικόλαος Σαμαράς Τμ. Εφ. Πληροφορικής, Πανεπιστήμιο Μακεδονίας Εγνατία 156, Θεσσαλονίκη Περίληψη Οι αλγόριθμοι τύπου simplex έχουν επικρατήσει εδώ και πολλά χρόνια ως ένα από τα βασικότερα εργαλεία για την επίλυση προβλημάτων γραμμικού προγραμματισμού. Αρκετά χαρακτηριστικά γνωρίσματα ενός Γραμμικού Προβλήματος (ΓΠ) πρέπει να ληφθούν υπόψη προκειμένου να μετρηθεί με ακρίβεια η υπολογιστική συμπεριφορά ενός αλγορίθμου. Στην εργασία αυτή παρουσιάζεται ένας ολοκληρωμένος τρόπος υπολογισμού της υπολογιστικής πολυπλοκότητας του πρωτεύοντος αλγορίθμου εξωτερικών σημείων. Ο υπολογισμός της υπολογιστικής πολυπλοκότητας πραγματοποιήθηκε με τη χρήση παλινδρομήσεων σε ένα σύνολο 3239 πυκνών και αραιών ΓΠ. Οι καλύτερες παλινδρομήσεις που προέκυψαν, σύμφωνα με τις αρχές που διέπουν τη θεωρία των παλινδρομήσεων, υιοθετήθηκαν ως υποδείγματα χρονισμού και επαναλήψεων του αλγορίθμου εξωτερικών σημείων. Λέξεις Κλειδιά: Αλγόριθμος Εξωτερικών Σημείων, Θεωρία Παλινδρομήσεων, Τυχαία Πυκνά και Αραιά ΓΠ, Υπολογιστική Μελέτη. 1. Εισαγωγή Ο Γραμμικός Προγραμματισμός αποτελεί ίσως τον πιο σημαντικό και καλά μελετημένο χώρο της επιστήμης της βελτιστοποίησης. Ένα μεγάλο εύρος πραγματικών προβλημάτων μπορεί να μορφοποιηθεί ως πρόβλημα γραμμικού προγραμματισμού. Ο πρωτεύων αλγόριθμος Simplex (PSA), ο οποίος ανακαλύφθηκε από τον Dantzig [Dantzig (1949)], [Dantzig (1963)] ενέπνευσε αρκετούς ερευνητές για πολλά χρόνια επειδή η υπολογιστική συμπεριφορά του σε πραγματικά προβλήματα είναι καλύτερη από την ανάλυση πολυπλοκότητας χειρότερης περίπτωσης. Θεωρείται ότι αποτελεί έναν από τους πιο σημαντικούς αλγόριθμους στην επιστήμη των υπολογιστών [ash (2000)]. Είναι γνωστό ότι ο αλγόριθμος Simplex δεν είναι πολυωνυμικός. Ο orgwardt [orgwardt (1982)] απέδειξε ότι η μέση πολυπλοκότητα του αλγορίθμου Simplex είναι πολυωνυμική. Ο Paparrizos [Paparrizos (1990)] επεκτείνοντας προηγούμενα αποτελέσματά του, ανέπτυξε έναν αλγόριθμο εξωτερικών σημείων (EPSA) για γενικά προβλήματα γραμμικού προγραμματισμού. Ένα κοινό χαρακτηριστικό όλων σχεδόν των αλγορίθμων τύπου simplex είναι ότι μπορούν να ερμηνευτούν ως μια διαδικασία που ακολουθεί τύπου simplex διαδρομές οι οποίες καταλήγουν στη βέλτιστη λύση σε πεπερασμένο αριθμό επαναλήψεων. Ο αλγόριθμος αυτός διαφέρει ριζικά από τον PSA επειδή οι βασικές λύσεις του δεν είναι εφικτές. Οι Paparrizos et al. [Paparrizos et al. (2008)] έδειξαν ότι η
2 γεωμετρία του EPSA καθιστά φανερό ότι αυτός ο αλγόριθμος είναι ταχύτερος από τον PSA, γεγονός το οποίο επαληθεύτηκε σε πρωταρχικά υπολογιστικά αποτελέσματα σύγκρισης πρώιμων δυϊκών εκδόσεων του EPSA σε ειδικά δομημένα γραμμικά προβλήματα, [Dosios and Paparrizos (1997)]. Η κλασική ανάλυση πολυπλοκότητας ασχολείται με τη θεωρητική μελέτη αλγορίθμων συναρτήσει μόνο της διάστασης των προβλημάτων. Από την άλλη μεριά η εμπειρική ή πειραματική ανάλυση ασχολείται με την υλοποίηση των αλγορίθμων και τη μέτρηση της συμπεριφοράς τους σε τυχαία ΓΠ ή/και σε μετροπρογράμματα. Αυτές οι δυο προσεγγίσεις είναι συμπληρωματικές μεταξύ τους. Αποτελεί πρόκληση η δημιουργία ενός υποδείγματος χρονισμού για έναν αλγόριθμο έτσι ώστε να μπορεί να προβλεφθεί η πραγματική υπολογιστική του συμπεριφορά. Στην παρούσα εργασία παρουσιάζουμε ένα υπόδειγμα χρονισμού για πρωτεύων αλγόριθμο εξωτερικών σημείων με ανάλυση παλινδρόμησης. Η ανάλυση παλινδρόμησης αποτελεί ένα ισχυρό στατιστικό εργαλείο για τον υπολογισμό της υπολογιστικής συμπεριφοράς αλγορίθμων. Η διάρθρωση του άρθρου είναι η ακόλουθη: Στην ενότητα 2 ανακεφαλαιώνουμε ορισμένα γνωστά αποτελέσματα και παρουσιάζουμε τον αλγόριθμο EPSA. Στην ενότητα 3 δίνουμε τα κύρια γνωρίσματα των δεδομένων της υπολογιστικής μελέτης. Στην ενότητα 4 παρουσιάζουμε τις υπολογιστικές πολυπλοκότητες (χρόνο CPU και επαναλήψεις) για τα πυκνά και αραιά ΓΠ. Τέλος στην ενότητα 5 αναφέρουμε τα συμπεράσματά μας. 2. Περιγραφή του Αλγορίθμου Έστω το ακόλουθο πρόγραμμα γραμμικού προγραμματισμού min c x μ. π. Ax = b (LP.1) x 0 όπου A R m n, c, x R n, b R m και σημαίνει αναστροφή. Υποθέτουμε ότι rank(a) = m, 1 m < n. Διαμερίζοντας τον πίνακα Α ως 1 και τα διανύσματα x και c αντίστοιχα ως A = [ ] x x = x, c c = c το (LP.1) γράφεται min μ. π. c x x x + c + x,x x = b 0 1 Χρησιμοποιούμε μια φορά το γράμμα Β για να συμβολίσουμε ένα σύνολο δεικτών και μια φορά για να συμβολίσουμε έναν πίνακα. Το ίδιο κάνουμε και για το Ν. Θεωρούμε ότι από τα συμφραζόμενα θα φαίνεται αν τα γράμματα αυτά συμβολίζουν σύνολα δεικτών ή πίνακες.
3 Ο πίνακας είναι ένας mxn αντιστρέψιμος υποπίνακας του A, γνωστός ως βασικός πίνακας. Οι στήλες του A οι οποίες ανήκουν στον λέγονται βασικές και όσες εναπομένουν λέγονται μη βασικές. Δοθείσης μιας βάσης, η αντίστοιχη λύση x = -1 b, x = 0 ονομάζεται βασική λύση. Μια λύση x = (x, x ) είναι εφικτή αν x 0. Διαφορετικά λέγεται μη εφικτή. Είναι γνωστό ότι η λύση του δυϊκού προβλήματος που αντιστοιχεί στη βάση, δίνεται από την s = c A w όπου w = (c ) -1 είναι οι πολλαπλασιαστές simplex και s είναι οι δυϊκές χαλαρές μεταβλητές. Η αντίστοιχη βάση λέγεται δυϊκή εφικτή αν s 0. Είναι γνωστό επίσης ότι s = 0. Σε κάθε επανάληψη ο EPSA δημιουργεί δύο δρόμους προς την βέλτιστη λύση. Ο ένας δρόμος είναι μη εφικτός και ο άλλος είναι εφικτός. Έτσι ο EPSA δεν χρειάζεται να προχωράει εξετάζοντας μια τέτοια ακμή μετά την άλλη κατά μήκος του πολύεδρου P = {x Ax b, x 0}. Επομένως, μπορούμε να ακολουθήσουμε συντομότερους δρόμους παρακάμπτοντας την εφικτή περιοχή. Πριν να προχωρήσουμε στην περιγραφή του EPSA, κρίνουμε σκόπιμο να εξηγήσουμε κάποιους συμβολισμούς. Η i-γραμμή του A συμβολίζεται με A i. και η j-στήλη με A.j. Σημειωτέον ότι το συνολικό έργο μιας επανάληψης σε αλγόριθμους τύπου simplex καθορίζεται από τον προσδιορισμό του αντίστροφου πίνακα -1 και σε κάθε επανάληψη ο τρέχων αντίστροφος -1 μπορεί να υπολογιστεί από τον προηγούμενο αντίστροφο -1 με μια απλή πράξη περιστροφής. Δηλαδή έχουμε όπου Ε -1 είναι ο πίνακας E 1 1 = I a pq ( a q -1 = Ε -1 Β -1 e ) e q q 1 = a a 1q 1/ a mq / a pq / a pq pq 1 Στην παραπάνω σχέση a pq είναι το στοιχείο περιστροφής, η στήλη q λέγεται στήλη περιστροφής και η γραμμή p λέγεται γραμμή περιστροφής. Ο πρωτεύων αλγόριθμος EPSA. Βήμα 0. (Αρχικοποίηση). Άρχισε με μια εφικτή βασική διαμέριση [, ]. Υπολόγισε τον πίνακα και τα διανύσματα -1, x, w, s, αντίστοιχα. Βρες τα σύνολα P = {j : s j < 0} και Q = {j : s j 0}. Επέλεξε αυθαίρετα ένα διάνυσμα λ = (λ 1, λ 2,, λ P ) > 0 και υπολόγισε το s 0 χρησιμοποιώντας τη σχέση και το διάνυσμα s 0 = λ js j j P
4 με Βήμα 1. (Έλεγχος τερματισμού). d h = j j P = 1 λ h A j.j j i. (Έλεγχος βελτιστότητας). Αν P =, SOP. Το πρόβλημα (LP.1) είναι βέλτιστο. ii. (Επιλογή εξερχόμενης μεταβλητής). Αν d 0, SOP. Αν s 0 = 0, το πρόβλημα (P.1) είναι βέλτιστο. Αν s 0 < 0 το πρόβλημα (LP.1) είναι απεριόριστο. Διαφορετικά, επέλεξε την εξερχόμενη μεταβλητή x [r] = x k χρησιμοποιώντας τη σχέση x [] r x [] i α = = min : d [] i < 0 d [] r d [] i Βήμα 2. (Επιλογή εισερχόμενης μεταβλητής). Υπολόγισε τα διανύσματα H rp = ( -1 ) r. A P και H rq = ( -1 ) r. A Q. Βρες επίσης τους λόγους θ 1 και θ 2 χρησιμοποιώντας τις σχέσεις sp s j θ1 = = min : h rj > 0 και j P (1) h rp h rj sq s j θ2 = = min : h rj < 0 και j Q (2) h rq h rj και προσδιόρισε δείκτες t 1 και t 2 τέτοιους ώστε P(t 1 ) = p και Q(t 2 ) = q. Αν θ 1 θ 2, θέσε l = p. Διαφορετικά, θέσε l = q. Η μη βασική μεταβλητή x l εισέρχεται στη βάση. Βήμα 3. (Περιστροφή). Θέσε [r] = l. Αν θ 1 θ 2 θέσε P = P\{l} και Q = Q {k}. Διαφορετικά, θέσε Q[t 2 ] = k. Χρησιμοποιώντας τη νέα διαμέριση (, ), όπου = (P, Q), υπολόγισε τον πίνακα και τα διανύσματα -1, x, w, s, αντίστοιχα. Επίσης, ανανέωσε το διάνυσμα d χρησιμοποιώντας τη σχέση d = E 1 d και πήγαινε στο Βήμα Δεδομένα υπολογιστική μελέτης 3.1. Τυχαία Πυκνά και Αραιά ΓΠ Το σύνολο των ΓΠ που χρησιμοποιήθηκαν προκειμένου να υπολογιστούν τα υποδείγματα χρονισμού ήταν 3239 τυχαία προβλήματα. Από αυτά 610 ήταν πυκνά και τα υπόλοιπα 2629 αραιά. Στον Πίνακα 1 παρουσιάζονται τα διαστήματα τιμών για το πλήθος των τεχνολογικών περιορισμών, για το πλήθος των μεταβλητών απόφασης καθώς και το
5 μικρότερο και μεγαλύτερο ΓΠ που χρησιμοποιήθηκες στο υπολογιστικό πείραμα. Στον Πίνακα 2 παρουσιάζεται η κατανομή των πυκνών και αραιών ΓΠ ως προς την κατάστασή τους (βέλτιστα, απεριόριστα και αδύνατα). Πίνακας 1. Ελάχιστο και Μέγιστο μέγεθος ΓΠ Πυκνά Αραιά Διάστημα τιμών για το m [ ] [3 5086] Διάστημα τιμών για το n [ ] [5 5859] ΓΠ με την ελάχιστη διάσταση 10x18 3x5 ΓΠ με τη μέγιστη διάσταση 2181x x5859 Πίνακας 2. Κατηγοριοποίηση ΓΠ Σύνολο (3239) Πυκνά (610) Αραιά (2629) Αδύνατα (0) Εφικτά (610) Αδύνατα (246) Εφικτά (2383) Βέλτιστα (610) Απεριόριστα (0) Βέλτιστα (2223) Κάθε ΓΠ πρόβλημα που δημιουργήθηκε έχει την ακόλουθη γενική μορφή 3.2. Υπολογιστικό περιβάλλον min z = st.. Ax b x 0 c x { } n m m n cx, R, b R, A R and =,=, Απεριόριστα (160) Ο πρωτεύων αλγόριθμος εξωτερικών σημείων υλοποιήθηκε στο περιβάλλον MathWorks MALA, version R14. Οι κύριοι λόγοι αυτής της επιλογής ήταν οι δυνατότητες χειρισμού αραιών πινάκων από το MALA. Τα χαρακτηριστικά του hardware και του software διαδραματίζουν καθοριστικό ρόλο στην υπολογιστική συμπεριφορά ενός αλγορίθμου [Maros et al. (1999)]. Τα χαρακτηριστικά του υπολογιστικού περιβάλλοντος που χρησιμοποιήθηκε φαίνονται στον Πίνακα Υπόδειγμα χρονισμού 4.1 Αρχικές δοκιμές Πίνακας 3. Περιγραφή υπολογιστικού περιβάλλοντος CPU Intel(R) Core, i GHz (2 processors) RAM size M L3 Cache size 8 M L2 Cache size 4x256 K L1 Cache size 4x32 K Operating System Microsoft Windows 7 Professional SP1 MALA version R14 SP1
6 Οι εξαρτημένες μεταβλητές οι οποίες χρησιμοποιήθηκαν για τον προσδιορισμό του καλύτερου υποδείγματος χρονισμού ήταν οι ακόλουθες: m πλήθος περιορισμών, n πλήθος μεταβλητών, density πυκνότητα ΓΠ, nnz πλήθος μη-μηδενικών στοιχείων του πίνακα Α, L μήκος δεδομένων και cond(a) βαθμός κατάστασης του πίνακα Α. Στη συνέχεια με τα στοιχεία που προέκυψαν διενεργήθηκε στατιστική επεξεργασία χρησιμοποιώντας το πρόγραμμα E-views 5.1 ώστε να εκτιμηθεί προσεγγιστικά η υπολογιστική πολυπλοκότητα του αλγορίθμου. Μετά από αρκετές δοκιμές καταλήξαμε στο συμπέρασμα ότι δεν υπάρχει μια γραμμική συσχέτιση μεταξύ της εξαρτημένης μεταβλητής και των ανεξάρτητων μεταβλητών. Συνολικά δημιουργήθηκαν 69 διαφορετικές παλινδρομήσεις και για τα πυκνά και για τα αραιά ΓΠ. Τα κριτήρια αποδοχής μιας παλινδρόμησης ήταν, σύμφωνα με τη στατιστική θεωρεία των παλινδρομήσεων, ο συντελεστής προσδιορισμού R 2 και ο διορθωμένος συντελεστής R 2 adjusted καθώς και η σημαντικότητα των συντελεστών της παλινδρόμησης (Prob< 0.05). Δηλαδή όλοι οι συντελεστές είναι στατιστικά σημαντικοί Κατασκευή υποδείγματος Για την εύρεση του καλύτερου υποδείγματος χρησιμοποιήθηκαν αρκετοί μετασχηματισμοί τόσο στις εξαρτημένες μεταβλητές όσο και στις ανεξάρτητες. Συγκεκριμένα, οι μετασχηματισμοί που χρησιμοποιήθηκαν είναι οι ακόλουθοι: m, n,, cond_α, m 2, n 2,, cond_α 2, m 3, n 3, ln(m), ln(n),., και ln(cond_α). Το καλύτερο υπόδειγμα παλινδρόμησης για τις επαναλήψεις σε πυκνά ΓΠ είναι το ακόλουθο: Log(niter)= m log(n) log(nnz) log(L)+ 1.34E-6m E-11n E-10nnz E-12L 2 Πίνακας 5. Καλύτερο υπόδειγμα παλινδρόμησης για τις επαναλήψεις σε πυκνά ΓΠ Dependent Variable: LOGIER Method: Least Squares Sample: Included observations: 610 Variable Coefficient Std. Error t-statistic Prob. C M LOG LOGZ LOGL M^2 1.34E E ^3 5.06E E Z^2 1.71E E L^2-1.42E E R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
7 Το παραπάνω υπόδειγμα (Πίνακας 4), συνδυάζοντας ικανοποιητικές τιμές για τους συντελεστές προσδιορισμού, χαμηλά σφάλματα και κανονική κατανομή των καταλοίπων των παρατηρήσεων, αποτελεί την καλύτερη επιλογή για την υπολογιστική συμπεριφορά του πρωτεύοντος αλγορίθμου εξωτερικών σημείων κατά την επίλυση πυκνών γραμμικών προβλημάτων όσον αφορά το πλήθος των επαναλήψεων του. Τα ίδια συμπεράσματα ισχύουν και για το υπόδειγμα παλινδρόμησης για το χρόνο CPU σε πυκνά ΓΠ (Πίνακας 5). Το καλύτερο υπόδειγμα παλινδρόμησης για το χρόνο CPU σε πυκνά ΓΠ είναι το ακόλουθο: Log(cpu)= n m-1.55E-5m E-6n E-9m E-9n E-12m E-13n E-27nnz 4 Πίνακας 5. Καλύτερο υπόδειγμα παλινδρόμησης για το χρόνο CPU σε πυκνά ΓΠ Dependent Variable: LOGCPU Method: Least Squares Sample: Included observations: 610 Variable Coefficient Std. Error t-statistic Prob. C M M^2-1.55E E ^2-6.10E E M^3 8.98E E ^3 2.28E E M^4-1.96E E ^4-3.22E E Z^4 2.06E E R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Το καλύτερο υπόδειγμα παλινδρόμησης για τις επαναλήψεις σε αραιά ΓΠ είναι το ακόλουθο: Log(niter)= 0.688log(L)-0.045log(cond(A)) m density+8.8E- 8m E-14nnz density 2 Πίνακας 6. Καλύτερο υπόδειγμα παλινδρόμησης για τις επαναλήψεις σε αραιά ΓΠ Dependent Variable: LOGIER Method: Least Squares Sample: Included observations: 2629 Variable Coefficient Std. Error t-statistic Prob.
8 LOGL LOGCODA M E DESIY M^2 8.82E E Z^2 2.76E E DESIY^ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat Το παραπάνω υπόδειγμα (Πίνακας 6), συνδυάζοντας ικανοποιητικές τιμές για τους συντελεστές προσδιορισμού, χαμηλά σφάλματα και κανονική κατανομή των καταλοίπων των παρατηρήσεων, αποτελεί την καλύτερη επιλογή για την υπολογιστική συμπεριφορά του πρωτεύοντος αλγορίθμου εξωτερικών σημείων κατά την επίλυση αραιών γραμμικών προβλημάτων όσον αφορά το πλήθος των επαναλήψεων του. Τα ίδια συμπεράσματα ισχύουν και για το υπόδειγμα παλινδρόμησης για το χρόνο CPU σε αραιά ΓΠ (Πίνακας 7). Το καλύτερο υπόδειγμα παλινδρόμησης για το χρόνο CPU σε αραιά ΓΠ είναι το ακόλουθο: Log(cpu)= log(L)-1.144log(density)-0.047log(cond(A))+2.12E- 7L-1.26E-14L E-22L E-30L 4 Πίνακας 7. Καλύτερο υπόδειγμα παλινδρόμησης για το χρόνο CPU σε αραιά ΓΠ Dependent Variable: LOGCPU Method: Least Squares Sample: Included observations: 2629 Variable Coefficien t Std. Error t-statistic Prob. C LOGL LOGDESIY LOGCODA L 2.12E E L^2-1.26E E L^3 2.98E E L^4-2.24E E R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
9 5. Συμπεράσματα Η ανάλυση παλινδρόμησης που παρουσιάστηκε στην ενότητα 4 για το χρόνο CPU και για το πλήθος των επαναλήψεων για κάθε κατηγορία προβλημάτων (πυκνά και αραιά) καταδεικνύει αρκετά ικανοποιητικές τιμές για το διορθωμένο συντελεστή R 2 adj καθώς και χαμηλές τιμές των τυπικών σφαλμάτων και στατιστικά σημαντικούς συντελεστές των παλινδρομήσεων. Επομένως, τα τελικά υποδείγματα υπολογιστικής πολυπλοκότητας είναι αποδοτικά, σύμφωνα με τη συμπεριφορά του αλγορίθμου εξωτερικών σημείων σε τυχαία πυκνά και αραιά ΓΠ. Αναφορές orgwardt, Η.Κ. (1982), Some distribution independent results about the asymptotic order of the average number of pivot steps in the simplex method, Mathematics of Operations Research, 7(3), Dantzig G.. (1949), Programming of Interdependent Activities, II, Mathematical Model, Econometrica, 17(3 and 4), Dantzig G.. (1963) Linear Programming and Extensions. J: Princeton, Princeton University Press. Dosios, K., Paparrizos K, (1997). "Resolution of the problem of degeneracy in a primal and dual simplex algorithm", Operation Research Letters, 20, Maros I. and Khaliq M. H. (1999) Αdvances in Design and Implementation of Optimization Software, echnical report, Imperial College London. ash J. C. (2000), he top 10 algorithms, Computing in Science and Engineering, 2(1), Paparrizos, K. (1990). "A generalization of an exterior point simplex algorithm for linear programming problems", echnical Report, University of Macedonia. Paparrizos, K., Samaras,., siplidis, K. (2008). "Pivoting algorithms for (LP) generating two paths", Pardalos, M.P., Floudas, A.C. (Eds), Encyclopedia of Optimization, 2 nd edition, Springer,
ΕΝΑΣ ΝΕΟΣ ΤΡΟΠΟΣ ΔΗΜΙΟΥΡΓΙΑΣ ΤΥΧΑΙΩΝ ΒΕΛΤΙΣΤΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ
ΕΝΑΣ ΝΕΟΣ ΤΡΟΠΟΣ ΔΗΜΙΟΥΡΓΙΑΣ ΤΥΧΑΙΩΝ ΒΕΛΤΙΣΤΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ Παπαρρίζος Κωνσταντίνος, Σαμαράς Νικόλαος, Στεφανίδης Γεώργιος Τμ. Εφαρμοσμένης Πληροφορικής
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10)
Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10) 1 2 y t = β 0 + β 1 x t + u t y t = Πληθωρισμός x t = Ανεργία 3 Dependent Variable: INFLATION Method: Least Squares Sample: 1948-1996 (49) C
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Μεθοδολογία αλγορίθμων τύπου simplex (5) Βήμα 0: Αρχικοποίηση (Initialization). Στο βήμα
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 13: Μεθοδολογία Αλγορίθμων τύπου Simplex, Αναθεωρημένος Πρωτεύων Αλγόριθμος Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ LAB 2
Landis Conrad conrad@aueb.gr AΣΥΜΠΤΩΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΣΤΑΣΙΜΕΣ- ΑΣΘΕΝΩΣ ΕΞΑΡΤΩΜΕΝΕΣ ΧΡΟΝΟΣΕΙΡEΣ ΔΙΑΔΙΚΑΣΙΕΣ ΜΟΝΑΔΙΑΙΑΣ ΡΙΖΑΣ Οι παρατηρήσεις που θα χρησιµοποιήσουµε σε
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Χαρακτηριστικά αλγορίθμων τύπου simplex (5) Αν το βασικό σημείο ικανοποιεί ακριβώς n-m ανισότητες
Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7)
Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) 1 Dependent Variable: T_BILLS3 Method: Least Squares Sample: 1948-2003 C 1.25 0.44 2.83 0.01 INFLATION 0.61 0.08 8.09 0.00 DEFICIT 0.70
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις
ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX
ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα
ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΙΙ 7-6-1012 Landis Conrad ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ Για τθν άςκθςθ χρθςιμοποιοφμε τισ παρακάτω μεταβλθτζσ, ςε θμεριςια κλίμακα,
Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )
ISN: 978-960-87277-8-6 23 ο Εθνικό Συνέδριο Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isn: 978-960-87277-8-6) Αθήνα, 2-4 Σεπτεμβρίου 202 Αίθουσα
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών
ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων
ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις
Υπολογιςτική πολυπλοκότητα αλγορίθμων γραμμικοφ προγραμματιςμοφ
Υπολογιςτική πολυπλοκότητα αλγορίθμων Διπλωματικι Εργαςία του φοιτθτι Οβελίδθ Παρίςθ Α.Μ.: 27/11 για το Μεταπτυχιακό ςτο Τμιμα Εφαρμοςμζνθσ Πλθροφορικισ Επιβλζπων Κακθγθτισ: Σαμαράσ Νικόλαοσ Πανεπιςτιμιο
Προβλέψεις ισοτιμιών στο EViews
Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 15: Κύκλωση Δεσμοί, Κανόνες Περιστροφής Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Μοντελοποίηση των αποδόσεων των κρατικών ομολόγων των χωρών της Ευρωζώνης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ & ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μοντελοποίηση των αποδόσεων των κρατικών
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΛΕΤΗ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΕΞΩΤΕΡΙΚΩΝ ΣΗΜΕΙΩΝ Διπλωματική Εργασία του Πόνου Παύλου Θεσσαλονίκη,
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ
ΚΕΦΑΛΑΙΟ 5 ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ 5.1 Εισαγωγή Μια υπολογιστική μελέτη (computational study) αποτελεί ένα μέσο σύγκρισης δυο ή περισσότερων αλγορίθμων ώστε να εξαχθούν ασφαλή συμπεράσματα για
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.
ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ, ΑΕΠ, ΕΞΑΓΩΓΕΣ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΕΛΛΑΔΑ- ΙΣΠΑΝΙΑ-ΠΟΡΤΟΓΑΛΙΑΠΟΡΤΟΓΑΛΙΑ Επιβλέπων καθηγητής: Δριτσάκης Νικόλαος Εκπονήθηκε από: Τέμπου Αικατερίνη (11/37) ΕΙΣΑΓΩΓΙΚΑ Μελέτη
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
ΟΠΤΙΚΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΟΠΤΙΚΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Λαζαρίδης Βασίλειος Παπαρρίζος Κωνσταντίνος Σαμαράς Νικόλαος Τμ. Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας Εγνατία 56 54006 Θεσσαλονίκη e-mail:
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
/
: 2014 2010 2015/2014 : 2014 2010 2015/2014 I II الملخص The aim of this study is to know the effect of the number of the financial indicators on the prices of organizations shares in Dubai s stock exchange,
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
ΔΗΜΗΤΡΗΣ- ΘΕΟΔΩΡΟΣ ΦΙΛΙΠΠΑΚΟΣ
ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τμήμα Δημόσιας Διοίκησης Μεταπτυχιακό Πρόγραμμα Σπουδών:Οικονομικά της Παραγωγής και των Διακλαδικών Σχέσεων ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΕΡΕΥΝΗΣΗ ΚΙΝΔΥΝΟΥ
Τμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών αποτελεί αντικείμενο που χρήζει
ΔIOIKHTIKH ENHMEPΩΣH 95 ΔΙΟΙΚΗΣΗ ΔΗΜΟΣΙΩΝ ΝΟΣΟΚΟΜΕΙΑΚΩΝ ΜΟΝΑΔΩΝ- ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΩΝ ΠΟΣΟΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΤΟΝ ΕΛΕΓΧΟ ΤΩΝ ΔΑΠΑΝΩΝ Tου Μάριου Τσάκα 1. ΕΙΣΑΓΩΓΗ Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
β) (βαζκνί: 2) Έζησ όηη ε ρξνλνινγηθή ζεηξά έρεη κέζε ηηκή 0 θαη είλαη αληηζηξέςηκε. Δίλεηαη ην αθόινπζν απνηέιεζκα από ην EViews γηα ηε :
1 ΝΑ ΑΠΑΝΤΗΘΟΥΝ 2 ΑΠΟ ΤΑ 3 ΘΕΜΑΤΑ ΘΕΜΑ 1 α) (βαζκνί: 3) Έζησ όηη ε ρξνλνινγηθή ζεηξά είλαη ζηάζηκε, αληηζηξέςηκε θαη αθνινπζεί ην ΑR(1) ππόδεηγκα. Να βξεζνύλ ε κέζε ηηκή, ε δηαζπνξά θαη ε απηνζπζρέηηζε
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Τεχνικές Κλιμάκωσης (1) Αδυναμία επίλυσης Γ.Π. μεγάλης κλίμακας Ύπαρξη στοιχείων περιστροφής
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 5: Τεχνικές Κλιμάκωσης, Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Ιστορική Αναδρομή, Εφαρμογές Γραμμικού και Δικτυακού Προγραμματισμού Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια
Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)
ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ «ΕΞΕΤΑΣΗ ΠΡΟΒΛΕΠΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΧΡΗΜ/ΩΝ ΑΝΑΛΥΤΩΝ» ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : Κ. ΠΙΤΤΗΣ ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ: Κ. ΠΙΤΤΗΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 14: Τεχνικές Βελτίωσης Απόδοσης Κώδικα σε Matlab, Ανάπτυξη Κώδικα σε Matlab για την Τεχνική Κλιμάκωσης της Ισορρόπησης Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Απλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Υλοποίηση Αναθεωρημένου Αλγορίθμου Simplex
Υλοποίηση Αναθεωρημένου Αλγορίθμου Simple Για το γενικό γραμμικό πρόβλημα Αμπατζόγλου Απόστολος Πανεπιστήμιο Μακεδονίας Ιούνιος 2005 Γενικό γραμμικό πρόβλημα Προβλήματα μεγιστοποίησης ή ελαχιστοποίησης
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία Η ΑΞΙΟΛOΓΗΣΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ ΚΙΝΗΣΗΣ
Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Στόχοι Εργαστηρίου ημιουργία Τυχαίων Βέλτιστων Γ.Π. Περιγραφή μεθόδου για δημιουργία βέλτιστων
Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση
Ο Αλγόριθµος της Simplex
Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x
Διερεύνηση και Αξιολόγηση Διαφορετικών Κανόνων Περιστροφής για τον Αναθεωρημένο Αλγόριθμο Simplex
Μεταπτυχιακή Εργασία Διερεύνηση και Αξιολόγηση Διαφορετικών Κανόνων Περιστροφής για τον Αναθεωρημένο Αλγόριθμο Simplex Παναγιώτης Βουτσκίδης Επιβλέπων Καθηγητής: Νικόλαος Σαμαράς Εξεταστές: Νικόλαος Σαμαράς
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική