Državni izpitni center FIZIKA. Izpitna pola 2. Petek, 29. avgust 2014 / 90 minut
|
|
- Ἀντιόπη Ζαΐμης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Š i f r a k a n d i d a a : Državni izpini cener *M14411* JESENSKI IZPITNI ROK FIZIKA Izpina pola Peek, 9. avgus 14 / 9 minu Dovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik, svinčnik HB ali B, radirko, šilček, računalo brez grafičnega zaslona in možnosi računanja s simboli er geomerijsko orodje. Kandida dobi ocenjevalni obrazec. Priloga s konsanami in enačbami je na perforiranem lisu, ki ga kandida pazljivo izrga. SPLOŠNA MATURA NAVODILA KANDIDATU Pazljivo preberie a navodila. Ne odpiraje izpine pole in ne začenjaje reševai nalog, dokler vam nadzorni učielj ega ne dovoli. Prilepie kodo oziroma vpišie svojo šifro (v okvirček desno zgoraj na ej srani in na ocenjevalni obrazec). Izpina pola vsebuje 6 srukuriranih nalog, od kaerih izberie in rešie 3. Ševilo očk, ki jih lahko dosežee, je 45; vsaka naloga je vredna 15 očk. Pri reševanju si lahko pomagae s podaki iz periodnega sisema na srani er s konsanami in enačbami v prilogi. V preglednici z "x" zaznamuje, kaere naloge naj ocenjevalec oceni. Če ega ne bose sorili, bo ocenil prve ri naloge, ki se jih reševali Rešive, ki jih pišie z nalivnim peresom ali s kemičnim svinčnikom, vpisuje v izpino polo v za o predvideni prosor. Pišie čiljivo. Če se zmoie, napisano prečraje in rešiev zapišie na novo. Nečiljivi zapisi in nejasni popravki bodo ocenjeni z očkami. Pri reševanju nalog mora bii jasno in korekno predsavljena po do rezulaa z vsemi vmesnimi računi in sklepi. Če se nalogo reševali na več načinov, jasno označie, kaero rešiev naj ocenjevalec oceni. Poleg računskih so možni udi drugi odgovori (risba, besedilo, graf ). Zaupaje vase in v svoje zmožnosi. Želimo vam veliko uspeha. Ta pola ima 4 srani, od ega 4 prazne. RIC 14
2 /4 *M14411* PERIODNI SISTEM ELEMENTOV I VIII 1,1 4, H He vodik 1 II III IV V VI VII 6,94 9,1 1,8 1, 14, 16, 19, liij 3 3, narij 11 39,1 kalij 19 85,5 rubidij cezij 55 (3) francij 87 berilij 4 4,3 magnezij 1 4,1 kalcij 87,6 sroncij barij 56 (6) radij 88 45, skandij 1 88,9 irij lanan 57 (7) akinij 89 47,9 ian 91, cirkonij hafnij 7 (67) ruherfordij 14 relaivna aomska masa simbol ime elemena vrsno ševilo Li Be B C N O F Ne Na Mg Al Si P S Cl Ar 5,9 vanadij 3 9,9 niobij anal 73 (68) dubnij 15 5, krom 4 96, molibden volfram 74 (71) seaborgij 16 54,9 mangan 5 (98) ehnecij renij 75 (7) bohrij 17 55,8 železo 6 11 ruenij osmij 76 (77) hassij 18 58,9 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr kobal 7 13 rodij iridij 77 (76) M meinerij 19 58,7 nikelj 8 16 paladij P plaina 78 (81) Ds darmsadij 11 63,5 65,4 baker cink Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Hg Tl Pb Bi Po A Rn Fr Ra Ac Rf Db Sg Bh Hs srebro Au zlao 79 (7) Rg rengenij 111 kadmij 48 1 živo srebro 8 bor 5 7, aluminij 13 69,7 galij indij 49 4 alij 81 ogljik 6 8,1 silicij 14 7,6 germanij kosier 5 7 svinec 8 dušik 7 31, fosfor 15 74,9 arzen 33 1 animon 51 9 bizmu 83 kisik 8 3,1 žveplo 16 79, selen elur 5 (9) polonij 84 fluor 9 35,5 klor 17 79,9 brom jod 53 (1) asa 85 helij, neon 1 39,9 argon 18 83,8 kripon ksenon 54 () radon cerij 58 3 orij prazeodim proakinij neodim 6 38 uran 9 (145) promeij 61 (37) nepunij samarij 6 (44) pluonij Lananoidi Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu evropij 63 (43) Akinoidi Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr americij gadolinij 64 (47) curij erbij 65 (47) berkelij disprozij 66 (51) kalifornij holmij 67 (5) einseinij erbij 68 (57) fermij ulij 69 (58) mendelevij ierbij 7 (59) nobelij luecij 71 (6) lavrencij 13
3 *M144113* 3/4 Konsane in enačbe srednji polmer Zemlje rz 637 km ežni pospešek g 9,81 m s 8 1 hiros svelobe c 3, 1 m s osnovni naboj Avogadrovo ševilo 19 e 1,6 1 A s 6 1 N A 6, 1 kmol splošna plinska konsana R 8,31 1 J kmol K graviacijska konsana elekrična (influenčna) konsana magnena (indukcijska) konsana 11 G 6,67 1 N m kg ,85 1 A s V m V s A m 3 1 Bolzmannova konsana k 1,38 1 J K Planckova konsana h 6,631 J s 4,14 1 ev s 8 4 Sefanova konsana 5,67 1 W m K poenoena aomska masna enoa lasna energija aomske enoe mase masa elekrona masa proona masa nevrona 7 mu 1 u 1,66541 kg 931,494 MeV/ c u mc 931,494 MeV 31 me 9,191 kg 1 u/183,511 MeV/ c 7 mp = 1,676 1 kg = 1,78 u = 938,7 MeV/ c 7 mn = 1, kg = 1,866 u = 939,566 MeV/ c Gibanje s s v v sv a v v a v v as 1 v o = r o v ar r s s sin v s cos a s sin Sila r g( r) g r z mm F G r r 3 F 1 kons. ks F ps F kf F G n gv F ma mv F G M rf sin p gh Energija AFs A Fs cos W mv k Wp mgh W ks pr P A A = W + W + W Ap V k p pr P perforiran lis
4 4/4 *M144114* Elekrika I e ee F 4 F ee 1 r A e U Es e E e S e CU C l W U e S CU e C RI l R S U P ef U I ; Ief UI Magneizem F IlB F IlB sin F ev B I B r B NI l M NISB sin Φ BS cos Ui i lvb U SB sin U i L I W LI m U U N N 1 1 Nihanje in valovanje c dsin j m k l g LC N P 4 r 1 v c 1 v c c Fl m sin c v Toploa Opika Moderna fizika n m M pv N N nrt l l T A V VT AQ W Q cmt Q qm c n c sin c sin c f a b s b p a n n 1 1 Wf h Wf Ai Wk W f W n W mc 1/ NN Ne ln 1/ W 3 kt A N Q P P S T l j P S j T 4
5 *M144115* 5/4 1. Merjenje V zapri seklenici s salno prosornino je zrak. Seklenico posavimo v večjo posodo z vodo, ki jo grejemo. Termomeer kaže emperauro vode o je udi emperaura seklenice in zraka v njej. Med segrevanjem se lak zraka v seklenici spreminja. Merive laka zraka pri dani emperauri so zbrane v spodnji preglednici. p i T C i p kpa i i T i K 1 kpa K T 1 8, 95, 16, 98, 3 3, 1,1 4 31, 5 1,7 5 46, 18, 6 55,8 111, i T V grelec p 1.1. V čeri solpec preglednice vpišie vsakokrano absoluno emperauro plina. Za vsako meriev izračunaje kvocien med lakom in absoluno emperauro zraka v seklenici er ga zapišie v zadnji solpec. pi 1.. Na podlagi vrednosi iz zadnjega solpca ( 1 kpa K ) z enačbo zapišie zvezo med Ti lakom zraka v seklenici in njegovo absoluno emperauro Narišie graf odvisnosi laka zraka v seklenici od emperaure, izražene v sopinjah Celzija. Merske očke povežie s premico, ki se jim, kolikor je mogoče, smiselno prilega. p kpa T C
6 6/4 *M144116* 1.4. Izračunaje smerni koeficien premice, ki se jo narisali na grafu. Točki, na podlagi kaerih bose izračunali smerni koeficien, posebej označie. Ne pozabie na enoo smernega koeficiena Izračunaje relaivno in absoluno napako izračunanega smernega koeficiena premice, če je relaivna napaka razlike emperaur, % in relaivna napaka razlike lakov 3, % Odčiaje z grafa, kolikšen bi bil lak opazovanega zraka v posodi pri T C, in ga zapišie Izračunaje, pri kaeri emperauri v C bi se lak zmanjšal na vrednos p, če bi za plin ves čas veljala enaka odvisnos pt, kakršno se narisali pri 3. vprašanju e naloge. Pri em smiselno uporabie enačbo narisane premice Kako imenujemo o emperauro? Zapišie odgovor. Poskus ponovimo ako, da povečamo začeno maso zraka v isi seklenici. Drugi dejavniki poskusa (prosornina seklenice, začena emperaura, segrevanje ) naj osanejo enaki Opišie, kako bi se zaradi povečane mase zraka spremenil graf, ki se ga narisali ko odgovor na 3. vprašanje e naloge.
7 *M144117* 7/4. Mehanika.1. Zapišie izrek o gibalni količini z enačbo in besedami. Anže je skočil v višino. Skok je izvedel iz počepa. To pomeni, da je najprej miroval v počepu (slika 1) in se je nao odrinil (slika ). V renuku, ko se je prenehal doikai al, kar kaže slika, je 1 imel hiros,4 m s. Anžeova masa je 6 kg. Del skoka, ko se Anže ni doikal al, lahko obravnavamo ko navpični me. v v h Slika 1: Anže miruje v počepu pred skokom. Slika : Trenuek, ko se Anže odlepi od plošče. Slika 3: Trenuek, ko doseže najvišjo višino. Slika 4: Trenuek, ko se spe doakne al... Kolikšna je bila hiros Anžeovega ežišča v najvišji očki?.3. Izračunaje, koliko časa po em, ko se je prenehal doikai al, je dosegel najvišjo očko.
8 8/4 *M144118*.4. Izračunaje, kako visoko je Anže skočil..5. Kolikšno hiros je imelo Anžeovo ežišče v renuku, ko se je spe doaknil al? Graf predsavlja spreminjanje sile, s kaero je Anže priiskal na podlago pred skokom, med njim in po njem. F N,5 1 1,5,5 3 s.6. Iz grafa odčiaje in napišie, ob kaerem času se je Anžeovo ežišče gibalo z največjo hirosjo navzgor.
9 *M144119* 9/4.7. Iz grafa preberie, koliko časa je rajal Anžeov odriv, o je čas od akra, ko se je iz počepa začel premikai, do akra, ko se je prenehal doikai al..8. Kolikšna je bila Anžeova gibalna količina v renuku, ko se je prenehal doikai al?.9. Izračunaje, s kolikšno povprečno silo je Anže priiskal na la med odrivom. (3 očke)
10 1/4 *M144111* 3. Termodinamika 3.1. Izkorisek oplonega sroja lahko zapišemo z enačbo AQ simbola A in Q v ej enačbi (in ne A in Q v splošnem smislu).. Pojasnie, kaj pomenia V zapri posodi s premičnim baom je idealni plin. Ko je njegova prosornina, dm in lak 1 bar, je njegova emperaura 5 C. Plin pri salnem laku (izobarna sprememba) segrevamo 3 ako, da se razpne na prosornino 1 dm. Masa plina se med em ne spreminja (gl. sliko). 3 Q 3.. Izračunaje emperauro plina po opisani spremembi Začeno sanje plina je v spodnjem diagramu pv označeno s očko 1. V diagram pv vrišie opisano izobarno spremembo in končno sanje plina po ej spremembi označie s očko. p bar V dm Koliko dela je opravil plin pri opisani izobarni spremembi?
11 *M * 11/4 Nao opravimo s plinom novo spremembo. Plin pri salni prosornini (izohorna sprememba) ohlajamo ako, da se lak zmanjša na, bar V diagram pv (v 3. vprašanju e naloge) vrišie o spremembo in končno sanje označie s očko 3. Kolikšno je delo, ki ga je opravil plin pri ej spremembi? S plinom opravimo še rejo spremembo, s kaero ga privedemo v začeno sanje. Plin pri salni 3 emperauri (izoermna sprememba) sisnemo na prosornino, dm in na začeno vrednos laka 1 bar V diagram pv (v 3. vprašanju e naloge) vrišie udi o spremembo.
12 1/4 *M144111* Plin je v zadnjem delu krožne spremembe, pri izoermnem siskanju, prejel 3 J dela Kolikšna je sprememba noranje energije plina pri izoermnem siskanju? Ali je plin pri ej spremembi oploo prejel ali oddal? Koliko oploe je plin izmenjal z okolico pri ej izoermni spremembi? (3 očke) 3.8. Toploni sroj opravlja krožno spremembo, ki je opisana zgoraj. Kolikšen je izkorisek oplonega sroja, ki opravlja ako krožno spremembo in med krožno spremembo prejme 8, kj oploe? 3.9. Koliko oploe odda sroj med ako krožno spremembo?
13 *M * 13/4 4. Elekrika in magneizem 4.1. Zapišie indukcijski zakon in pojasnie pomen količin, ki v njem nasopajo. V obliki valja navia uljava ima upor 15. S o uljavo in dodanim upornikom 3 naredimo dve različni vezji (A in B) in vsako posebej priključimo na napeos 1 V, kakor kažea sliki. Tuljava Tuljava Upornik Upornik Slika 1: Vezje A Slika : Vezje B 4.. Izračunaje, kolikšno elekrično moč porablja uljava v vezju B Kaj se zgodi s okom v uljavi, če odsranimo upor 3 iz prvega oziroma iz drugega vezja (vzamemo klešče in odščipnemo žici, ki vodia do upora)? Odgovora uemeljie. Če odsranimo upornik iz vezja A: Če odsranimo upornik iz vezja B:
14 14/4 *M * Premer uljave je 3, cm, njena dolžina 1 cm, na uljavi pa je 5 ovojev. Tuljavo priključimo na vir napeosi ako, da po njej eče ok 1, A Izračunaje gosoo magnenega polja v središču uljave Izračunaje celono dolžino žice v naviju in ploščino preseka žice, s kaero je navia uljava. 1 Specifični upor bakra je,17 mm m. Upor uljave je 15. (3 očke) Tok po uljavi usvari magneno polje v njej, pa udi šibkejše magneno polje v njeni okolici. V očko T posavimo krožno uljavico z 1 ovoji in površino preseka, cm ako, da os uljavice sovpada z osjo prvone, večje uljave (gl. sliko). Tuljavico priključimo na volmeer.
15 *M * 15/ Tok po večji uljavi spreminjamo, zao se gosoa magnenega polja v očki T spreminja ako, kakor kaže prvi graf. V drugi graf vrišie časovno spreminjanje inducirane napeosi, ki jo izmerimo z volmerom. Izračunaje vrednosi inducirane napeosi in usrezno opremie navpično os grafa s skalo in oznakami. B mt,63,4,1 1 3 ms U i mv ms (3 očke) 4.7. Vaš sošolec komenira reševanje naloge akole:»izračunana inducirana napeos je napačna, saj nismo upoševali, da je zanka ves čas v zemeljskem magnenem polju.«ali ima sošolec prav? Odgovor uemeljie.
16 16/4 *M * 5. Nihanje in valovanje V sredino okroglega ribnika s premerom m vržemo kamen. Krožni val porebuje 5, s, da pride do obale Izračunaje hiros razširjanja valovanja. Na sredo ribnika prilei raca. Čez nekaj časa se am mirno ziblje (niha v navpični smeri) na vodni gladini s frekvenco, Hz. 5.. Izračunaje nihajni čas in valovno dolžino valovanja, ki se širi od race. (3 očke) Raca je vseskozi v središču ribnika in zaradi navpičnega nihanja opravi v enem nihaju 8, cm dolgo po Izračunaje ampliudo, s kaero niha raca, njeno največjo hiros in največji pospešek. (3 očke) 5.4. Pojasnie, kaj se zgodi z ampliudo valovanja, ko pouje od race proi bregu. Raca se začne gibai premo enakomerno sran od središča ribnika. Pri em še vedno niha s frekvenco, Hz. V očki na bregu, ki leži na premici, po kaeri se giblje raca, izmerimo frekvenco valovanja 1, 9 Hz Izračunaje hiros, s kaero se giblje raca. Pojasnie, ali se raca približuje ali oddaljuje od očke, v kaeri merimo frekvenco. (3 očke)
17 *M * 17/4 Na jezeru prisane še ena raca. Prva raca se preneha gibai proi bregu, a še vedno niha. Obe raci nihaa v navpični smeri sočasno z enako frekvenco, drugače pa sa pri miru ne plavaa naokoli po ribniku Izračunaje razdaljo med racama, če nihaa s frekvenco, Hz in nasane v jezeru 8 pasov ojačiev, od kaerih dva poekaa v smeri zveznice med racama, kakor kaže slika. Raca opazuje ribo, ki je pod vodno gladino, kakor kaže slika. Lomni kvocien vode je 1, 3, zraka pa 1. γ δ 5.7. Izračunaje ko, ki je označen na sliki, če je ko enak.
18 18/4 *M * 6. Moderna fizika 6.1. Z besedami pojasnie, kaj je izsopno delo in kaj mejna zaporna napeos pri fooefeku na foocelici. 6.. Na sliki je skica foocelice z elekričnim vezjem in virom svelobe, ki povzroča fooefek. Napeos vira je V. V skico vrišie puščico, ki kaže smer oka skozi ampermeer. A U = V Vir napeosi nasavimo na,1 V in priključimo na foocelico ako, da napeos zavira izbie elekrone Na spodnjo skico vrišie, kje je poziivni (+) in kje negaivni ( ) priključek vira. A 6.4. Na skico vrišie še silnice elekričnega polja med elekrodama.
19 *M * 19/ Sveloba, s kaero osveljujemo foocelico, ima valovno dolžino 3 nm. Izračunaje, kolikšna je energija foonov e svelobe Kaero izmed kovin, ki so našee v preglednici, naj uporabimo za kaodo, da bo v opisanem primeru največja kineična energija elekronov, ki jih izbija sveloba z valovno dolžino 3 nm, enaka 1,1 ev? Odgovor zapišie z besedami in ga podprie z računom. Elemen Izsopno delo (ev) Aluminij 4,8 Svinec 4,14 Magnezij 3,68 Cink 4, Izračunaje hiros elekronov, kaerih kineična energija je 1,1 ev.
20 /4 *M14411* V naslednjem poskusu osveljujemo cezijevo kaodo foocelice s svelobo, kaere speker je prikazan na naslednjem grafu. Izsopno delo za cezij je,1 ev. inenziea nm 6.8. Izračunaje, pri kolikšni mejni vrednosi zaporne napeosi bo ok skozi foocelico padel na nič Ali se bo mejna vrednos zaporne napeosi kaj spremenila, če svelobo, kaere speker je prikazan, pošljemo najprej skozi filer, ki prepušča le vidno svelobo? Dovolj je, če povese, ali se bo povečala, zmanjšala ali pa bo osala nespremenjena, in vaš odgovor uemeljie.
21 *M144111* 1/4 Prazna sran
22 /4 *M14411* Prazna sran
23 *M144113* 3/4 Prazna sran
24 4/4 *M144114* Prazna sran
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
*M * FIZIKA. Izpitna pola 2. Ponedeljek, 8. junij 2009 / 105 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a a : Državni izpini cener *M914111* SPOMLADANSKI IZPITNI ROK FIZIKA Izpina pola Ponedeljek, 8. junij 9 / 15 minu Dovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
*M * FIZIKA. Izpitna pola 1. Četrtek, 5. junij 2008 / 90 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a a : ržavni izpini cener *M84* SPOMLNSK ZPTN ROK FZK zpina pola Čerek, 5. junij 8 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik, svinčnik
Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat
*M * FIZIKA. Izpitna pola 1. Sobota, 28. avgust 2010 / 90 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a a : ržavni izpini cener *M141111* FIZIK Izpina pola 1 JESENSKI IZPITNI ROK Soboa, 8. avgus 1 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik,
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
*M * FIZIKA. Izpitna pola 1. Sobota, 5. junij 2004 / 90 minut. [ifra kandidata: Dr`avni izpitni center SPOMLADANSKI ROK
[ifra kandidaa: r`avni izpini cener *M4141111* SPOMLNSKI ROK FIZIK Izpina pola 1 Soboa, 5. junij 4 / 9 minu ovoljeno dodano gradivo in pripomo~ki: kandida prinese s seboj nalivno pero ali kemi~ni svin~nik,
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.
ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών
Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του
Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2007 Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ
Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
POLA 1: 35 vprašanj izbirnega tipa. 1. Kolikšna je povprečna masa štirih uteži, kjer imajo tri maso po 1, 06 kg, ena pa 1, 02 kg?
POL : 35 vprašanj izbirnega ipa. Kolikšna je povprečna masa širih ueži, kjer imajo ri maso po, 6 kg, ena pa, kg?, 6 kg, 5 kg, 4 kg, kg. Telo, ki sprva miruje, se v prvih dveh sekundah enakomerno pospešenega
Državni izpitni center FIZIKA. Izpitna pola 1. Četrtek, 28. avgust 2014 / 90 minut
Š i f r a k a n d i d a a : ržavni izpini cener *M44* JESENSKI IZPITNI ROK FIZIK Izpina pola Čerek, 8. avgus 4 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik,
*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M14111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Sobota, 8. avgust 1 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.
ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF
ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE
ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE Θεωρητικό Μέρος REE και Περιοδικός Πίνακας H 1 Li 3 Na K Rb Cs Fr 11 19 37 55 87 Be Mg Ca Sr 4 12 20
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Na/K (mole) A/CNK
Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA
Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας
Μάθημα 9ο Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Πολύ-ηλεκτρονιακά άτομα Θωράκιση- διείσδυση μεταβάλλει την
1. Η Ανόργανη Χημεία και η εξέλιξή της
1. Η Ανόργανη Χημεία και η εξέλιξή της Σύνοψη Παρουσιάζονται οι ορισμοί της Προχωρημένης Ανόργανης Χημείας, της Χημείας Στερεάς Κατάστασης, καθώς επίσης και της Οργανομεταλλικής και Βιοανόργανης Χημείας
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
*M * FIZIKA. Izpitna pola 2. Sobota, 5. junij 2004 / 105 minut. [ifra kandidata: SPOMLADANSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M414111* SPOMLADANSKI ROK FIZIKA Izpitna pola Sobota, 5. junij 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη
Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα
Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν
*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
*M * FIZIKA. Izpitna pola 2. Četrtek, 27. avgust 2009 / 105 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M94111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 7. avgust 9 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
*M * FIZIKA. Izpitna pola 2. Četrtek, 5. junij 2008 / 105 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M814111* SPOMLADANSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 5. junij 8 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični
Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων
Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται
*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3
ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)
ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ
ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στις φασµατοµετρικές τεχνικές ανάλυσης 2. Προετοιµασία δειγµάτων 3. ιαλυτοποίηση δειγµάτων ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΙΑΛΥΜΑΤΩΝ Ατοµική Φασµατοσκοπία
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
panagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε
I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη
I. Ιδιότητες των στοιχείων Χ. Στουραϊτη ΠΕΡΙΕΧΟΜΕΝΑ 1. Περιοδικός Πίνακας 2. Χημικοί δεσμοί 3. Καταστάσεις της ύλης 4. Γεωχημικές ταξινομήσεις 5. Πυρήνας και ραδιενέργεια 6. Ασκήσεις 2 Συγγράμματα Κεφλαιο
*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P113C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Torek, 7. februar 01 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,
Ασκήσεις 1. Να γίνει η ηλεκτρονιακή δόμηση για τα ακόλουθα άτομα στη θεμελιώδη τους κατάσταση: 29Cu, 33As, 38Sr, 42Mo, 55Cs. Πόσα ηλεκτρόνια έχει η εξωτερική τους στιβάδα και πόσα ασύζευκτα ηλεκτρόνια
ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ
Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το
Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 3 Ÿ - ˆ ˆ Šˆ Œ ˆ Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š œ Š.. ƒμ Ê μ 1,. Œ. Ö Ê μ 1,. ˆ. ± 1, Œ.. μ É Ó 2,,.. ²μ 2, ˆ.. ˆ²ÓÎ ±μ 3 1 ƒ μ²μ Î ± É ÉÊÉ, Œμ ± 2 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 3 ÊÎ μ-
PROCESIRANJE SIGNALOV
Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( )
Š i f r a k a n d i d a t a : Državni izpitni center *M10277111* JESENSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Ponedeljek, 30. avgust 2010 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Studies in Magnetism and Superconductivity under Extreme Pressure
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-1-2011 Studies in Magnetism and Superconductivity under Extreme Pressure Wenli Bi Washington
µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ)
AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΑ ΑΚΤΝΩΝ-γ (2 o ΜΕΡΟΣ) - Μέτρηση φυσικής ρδιενέργεις - Προσδιορισµός στοιχείων µε νετρονική ενεργοποίηση Εισγωγή 1. Φυσική ρδιενέργει Η φυσική ρδιενέργει προέρχετι πό την κτινοολί (ενέργει)
ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H
Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της
Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις
Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις Ακολουθώντας τους κανόνες δόμησης των πολυηλεκτρονιακών ατόμων που αναπτύχθηκαν παραπάνω, θα διαπιστώσουμε ότι σε ορισμένες περιπτώσεις παρατηρούνται αποκλίσεις
Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"
ΕΛΛΗΝΙΚΗ ΑΡΧΗ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ (Ε.Α.Γ.Μ.Ε.) Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"
*M * FIZIKA. Izpitna pola 2. Torek, 31. avgust 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M44111* JESENSKI ROK FIZIKA Izpitna pola Torek, 31. avgust 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M4411* JESENSKI ROK FIZIKA Izpitna pola Sreda, 1. september 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
5. Ηλεκτρονικές Δομές και Περιοδικότητα
5. Ηλεκτρονικές Δομές και Περιοδικότητα ΠΕΡΙΕΧΟΜΕΝΑ: Spin ηλεκτρονίου και απαγορευτική αρχή του Pauli Αρχή δόμησης και περιοδικός πίνακας Αναγραφή ηλεκτρονικών δομών με χρησιμοποίηση του περιοδικού πίνακα
ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών
ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών Μάθημα:ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ ΔΙΔΑΣΚΩΝ: ΣΑΒΒΑΚΗΣ ΚΩΣΤΑΣ Καθηγητής ΤΕΙ Πληροφορίες Διδάσκων (Θεωρία): Κ. Σαββάκης Γραφείο
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
*M * MEHANIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Četrtek, 1. junij Državni izpitni center SPLOŠNA MATURA
Držani izpini cener *M7743* SPOMLDSKI IZPITI ROK MEHIK VODIL Z OCEJEVJE Čerek,. junij 07 SPLOŠ MTUR Držani izpini cener Ve praice pridržane. M7-74--3 IZPIT POL. naloga...3.4 3 F 7000 7000 0 k 7 k Izražena
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα
ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη Β τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 007 Για τη Β τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã