*M * FIZIKA. Izpitna pola 1. Sobota, 5. junij 2004 / 90 minut. [ifra kandidata: Dr`avni izpitni center SPOMLADANSKI ROK
|
|
- Σάρρα Μαυρίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 [ifra kandidaa: r`avni izpini cener *M * SPOMLNSKI ROK FIZIK Izpina pola 1 Soboa, 5. junij 4 / 9 minu ovoljeno dodano gradivo in pripomo~ki: kandida prinese s seboj nalivno pero ali kemi~ni svin~nik, svin~nik H ali, plasi~no radirko, {il~ek, `epni ra~unalnik in geomerijsko orodje. Kandida dobi lis za odgovore. SPLO[N MTUR NVOIL KNITU Pazljivo preberie a navodila. Ne obra~aje srani in ne re{uje nalog, dokler vam nadzorni u~ielj ega ne dovoli. Prilepie kodo oziroma vpi{ie svojo {ifro v okvir~ek desno zgoraj na ej srani in na lis za odgovore. Pri re{evanju nalog izberie en odgovor, ker je samo en pravilen, in sicer ako, da obkro`ie ~rko pred njim. Naloge, kjer bo izbranih ve~ odgovorov, bodo o~kovane z ni~ o~kami. Odgovore v izpini poli obkro`uje z nalivnim peresom ali kemi~nim svin~nikom. Na lis za odgovore jih vna{aje sproi. Pri em upo{evaje navodila, ki so na njem. Pri ra~unanju uporabie podake iz periodnega sisema na ~eri srani izpine pole. Zaupaje vase in v svoje vam veliko uspeha. Ta pola ima 16 srani, od ega prazni. RI 4
2 M KONSTNTE IN ENČE, KI VM OO V POMOČ ežni pospešek hiros svelobe osnovni naboj aomska enoa mase vogadrovo ševilo splošna plinska konsana g 9, 81 m s 8 1 c 3, 1 m s 19 e 1, 6 1 s 7 u 1, 66 1 kg 938 MeV c N 6 1 6, 1 kmol R 8, 31 1 J kmol K graviacijska konsana G 11 6, 67 1 N m kg influenčna konsana indukcijska konsana ε 8, 85 1 s V m µ 4π 1 Vs m olzmannova konsana k 3 1 1, 38 1 J K Planckova konsana Sefanova konsana h 6, 63 1 J s 4,14 1 ev s 8 4 σ 5, 67 1 W m K GINJE s v s v a s v + v v + a v v + as 1 ω π ν π v ωr a r ω r s s sin ω v ωs cos ω a ω s sin ω SIL mm F G r 3 r F 1 kons. ks F ps F k F n F ρgv F G ma mv F G M r F p ρgh ENERGIJ F s W W k p mv mgh ks Wpr P W + W + W k p p V ρv p + + ρgh kons. pr
3 M ELEKTRIK e I ee F 4 π F ee 1 ε r e U E s e e σe S σe E ε e U ε S l U We We we V ε E we U RI ζl R S P UI MGNETIZEM F Il F Ilsin α F ev µ I π r µ NI l M NISsin α Φ S S cos α U lv U ωssin ω U i i i Φ Φ L I µ N S L l LI Wm wm µ NIHNJE IN VLOVNJE m π k l π g π L c λν Nλ sin α d P j S E c 1 j ε E c j j cos α v ν ν (1 ± ) c ν ν v 1 c TOPLOT m n M pv nrt l αl T V βv T + Q W Q cm T Q qm 3 W kt T P λs l 4 j σt OPTIK c n c sin α c n sin β c n f a b 1 1 MOERN FIZIK Wf hν W + W Wf Wn hc λmin eu W mc f i k 1 N N N e ln N 1 λ
4 4 M PERIONI SISTEM ELEMENTOV I VIII 1,1 4, H He vodik helij 1 II III IV V VI VII 6,94 9,1 relaivna aomska masa 1,8 1, 14, 16, 19,, Li e simbol N O F Ne liij berilij ime elemena bor ogljik dušik kisik fluor neon 3 4 vrsno ševilo , 4,3 7, 8,1 31, 3,1 35,5 4, Na Mg l Si P S l r narij magnezij aluminij silicij fosfor žveplo klor argon ,1 4,1 45, 47,9 5,9 5, 54,9 55,9 58,9 58,7 63,6 65,4 69,7 7,6 74,9 79, 79,9 83,8 K a Sc Ti V r Mn Fe o Ni u Zn Ga Ge s Se r Kr kalij kalcij skandij ian vanadij krom mangan železo kobal nikelj baker cink galij germanij arzen selen brom kripon ,5 87,6 88,9 91, 9,9 95,9 (97) Rb Sr Y Zr Nb Mo Tc Ru Rh Pd g d In Sn Sb Te I Xe rubidij sroncij irij cirkonij niobij molibden ehnecij ruenij rodij paladij srebro kadmij indij kosier animon elur jod ksenon (9) (1) () s a La Hf Ta W Re Os Ir P u Hg Tl Pb i Po Rn cezij barij lanan hafnij anal volfram renij osmij iridij plaina zlao živo srebro alij svinec bizmu polonij asa radon (3) (6) (7) (61) (6) (66) (64) (69) (68) Fr Ra c Rf b Sg h Hs M francij radij akinij ruherfordij dubnij seaborgij bohrij hassij meinerij cerij 58 3 orij prazeodim 59 (31) proakinij neodim 6 38 uran 9 (145) promeij 61 (37) nepunij samarij 6 (44) pluonij Lananoidi e Pr Nd Pm Sm Eu Gd Tb y Ho Er Tm Yb Lu evropij 63 (43) kinoidi Th Pa U Np Pu m m k f Es Fm Md No Lr americij gadolinij 64 (47) kirij erbij 65 (47) berkelij disprozij 66 (51) kalifornij holmij 67 (54) ajnšajnij erbij 68 (57) fermij ulij 69 (58) mendelevij ierbij 7 (59) nobelij luecij 71 (6) lavrencij 13
5 M Kaera od navedenih eno je osnovna enoa? mper. Tesla. Vol. Newon.. Vzemimo, da velja Y kx, pri čemer merimo Y v enoah kakšnih enoah izražamo k? s m in X v enoah m s. V s m s m m s m s 3. Ura je naančna na, 14 %. Koliko lahko največ zaosane na dan? 1 min min 3 min 5 min 4. Kroglo vržemo navpično navzgor. Kaj velja za pospešek v najvišji očki lea? Pospešek ima velikos Pospešek ima velikos 9, 8 m s in je usmerjen navzdol. 9, 8 m s in je usmerjen navzgor. Pospešek je. Pospešku se spremeni smer iz navzgor v navzdol, velikos osane enaka.
6 6 M vo najprej spelje iz mirovanja, nao začne zavirai, se usavi in akoj vzvrano zapelje nazaj do izhodišča. Kaeri od spodnjih grafov najbolje kaže spreminjanje lege avomobila v odvisnosi od časa? x x x x 6. Na ravno palico prirdimo dve ueži in palico vrimo okrog osi, kakor kaže slika. Kaera rdiev za gibanje obeh ueži je pravilna? Ueži imaa enako obodno hiros. Ueži imaa enak pospešek. Ueži imaa enako kono hiros. Ueži imaa različen obhodni čas. 7. Kaj velja za enakomerno krožeče elo? Nanj deluje vedno le ena sila. Gibanje ni pospešeno. V irnici elo zadržuje sila, ki vleče elo navzven. Velikos pospeška se ne spreminja. 8. Telo posavimo na desko, ki jo počasi nagibamo iz vodoravne proi navpični legi. Kaera od spodnjih slik pravilno kaže spreminjanje s podlago vzporedne komponene eže ( F ) elesa med nagibanjem deske? ϕ F F F F mg mg mg mg ϕ ϕ ϕ ϕ
7 M Telo z maso kg leži na vodoravni podlagi. Najmanjša s podlago vzporedna sila, ki je porebna, da ga premaknemo, je 1 N. Kolikšen je koeficien lepenja med elesom in podlago?,, Slika kaže dve kroglici, ki sa prirjeni na konceh zelo lahke palice. S kaero od spodnjih enačb izračunamo lego ežišča akega sisema? x mx mx 1 1 T m + m 1 x mx + mx 1 1 T m m 1 x mx mx 1 1 T m m 1 x mx + mx 1 1 T m + m 1 x x x 1 x x m 1 m 11. Na dvigalo z maso 1 kg deluje vlečna vrv s silo 1 N. S kolikšno silo deluje dvigalo na vrv? N 1 N 1 N N 1 1. Voziček z maso 4 g se giblje s hirosjo m s, rči v enak mirujoči voziček in se z njim sprime. Kolikšna je hiros vozičkov akoj po rku? m s 1 1 m s 1 m s 1 4 m s 1
8 8 M Kroglico z maso m in kroglico z maso m m hkrai spusimo z enake višine. Zračni 1 1 upor zanemarimo. Kaera od spodnjih izjav je pravilna? Poencialna energija prve kroglice je ves čas padanja enaka poencialni energiji druge kroglice. Kineična energija prve kroglice je ves čas padanja enaka kineični energiji druge kroglice. Gibalna količina prve kroglice je ves čas padanja enaka gibalni količini druge kroglice. Hiros prve kroglice je ves čas padanja enaka hirosi druge kroglice. 14. Kolikšna sila vzgona deluje na skalo z maso 5 kg in prosornino 17 lirov, ko je vsa poopljena v vodo? 5 N 17 N 33 N 5 N 15. Slika kaže, kako se spreminja prosornina neke snovi v odvisnosi od emperaure pri salnem laku. Kaera od spodnjih rdiev je pravilna? Prosornina snovi in njena emperaura sa premosorazmerni. Med segrevanjem snovi se je spremenilo agregano sanje snovi. Snov je idealni plin. Med segrevanjem se snov najprej krči, nao razeza. V T 16. Kako lahko s splošno plinsko enačbo izrazimo gosoo idealnega plina? pm ρ RT RT ρ pm ρ RM pt Rp ρ TM
9 M V posodah je enaka množina idealnega plina. Prosornini posod sa enaki, prav ako začena emperaura. Z dovajanjem oploe ogrejemo plina v posodah do enake končne emperaure. Plin v prvi posodi ima med segrevanjem salno prosornino, v drugi posodi pa je med segrevanjem salen lak. Plinu v prvi posodi dovedemo Q, plinu v drugi posodi pa 1 Q. Kaj velja za i dve oploi? Q Q 1 1 Q < Q 1 Q > Q 1 Q < Q + p V 1 V kons. p kons. 18. Koliko oploe je reba odvzei človeku z maso 75 kg in emperauro 39, da ga ohladimo na emperauro 37? Privzemie, da je specifična oploa elesa J kg K., 63 MJ 1 MJ 87 MJ 98 MJ 19. Kolikšna elekrična sila deluje med proonom in elekronom, ko sa drug od drugega 9 oddaljena, 1 m? 19 1, 1 N 11 5, 8 1 N 1 7, 1 N 8 3, 6 1 N. Kaera od eno je enoa za kapacieo kondenzaorja? s V Vs s Vs
10 1 M Elekroskop je umerjen za merjenje naboja. Naelekrimo ga z nabojem e 1 in ga prek sikala priključimo na drug enak elekroskop, ki smo ga prej razelekrili. Kolikšen naboj kažea elekroskopa poem, ko sklenemo sikalo? Prvi kaže e 1, drugi nič. Prvi kaže nič, drugi e. 1 Oba kažea e. 1 e 1 Oba kažea.. Energija elekričnega polja naelekrenega ploščaega kondenzaorja je µ J. Kolikšno delo opravimo, ko razdaljo med ploščama kondenzaorja povečamo na dvojno vrednos? Kondenzaor ni priključen na vir napeosi. 1 µ J µ J 4 µ J 3. Kolikšna je napeos med očkama X in Y v vezju, ki ga kaže spodnja slika? 7 V 6 V 5 V, 5 V 4 V X V Y 1 V 1 V 4. Vezje priključimo na baerijo z zanemarljivim noranjim uporom ako, kakor kaže skica. Kolikšen ok eče skozi upornik z uporom 3 Ω?, 5, Ω 7 Ω 3 Ω 1 Ω 5 V
11 M Proon se v magnenem polju, ki kaže proi severu Zemlje, giblje proi zahodu. V kaero smer se odkloni? V lis. Iz lisa. Proi severu Zemlje. Proi jugu Zemlje. zahod sever v vzhod jug 6. Slika kaže model kaodne cevi. Točka na zaslonu je svela, ker vanjo zadevajo elekroni z veliko kineično energijo. Kaj je reba sorii, da bo očka svelejša? Povečai U x. U y Povečai Ux in U y. Povečai U y. Povečai U a. U x U a 7. V kaeri legi je rezulana zunanjih sil, ki delujejo na sinusno nihajoče vzmeno nihalo, največja? Ko gre nihalo skozi ravnovesno lego. Na sredini med ravnovesno in skrajno lego. Ko je odmik nihala od ravnovesne lege enak nič. V skrajni legi. 8. Kaeri od grafov pravilno kaže, kako se pri dušenem nihanju s časom spreminja ampliuda ninega nihala? s s s s
12 1 M Skica kaže ravne valove na vodi, narisane v perspekivi. Kaera od označenih čr je valovna čra? Čra. Čra. Čra. Nobena od označenih čr. 3. va polarizaorja posavimo zaporedno in nanju posveimo z nepolarizirano svelobo. Sveloba prehaja najprej skozi gornji polarizaor, nao skozi spodnjega. Črkana čra nakazuje prepusno smer polarizaorjev. Kaeri par prepušča NJVEČ svelobe? Kaj pomeni N v enačbi d sin α Nλ? Ševilo hrbov soječega valovanja. Ševilo očk, v kaerih se valovanje ojača. Ševilo smeri, v kaerih se valovanje ojača. Ševilo valovnih dolžin, za kolikor je očka ojačive bolj oddaljena od enega izvira valovanja kakor od drugega. 3. Piščal z dolžino d je na eni srani zapra, na drugi pa odpra. Kaera enačba velja za drugi najnižji lasni on soječega zvočnega valovanja? Nihanje zraka shemaično kaže slika. λ λ λ λ d 3 3d 4 4d 3 3d
13 M Kaero od spodaj našeih valovanj ima največjo hiros? Longiudinalno valovanje v vodi. Zvok v zraku. Žarki γ. Transverzalno valovanje na vrvi. 34. Pred lečo, ki jo kaže spodnja slika, lahko posavimo predme v očke F, 1, ali 3. V očki F je gorišče leče. V kaero očko moramo posavii predme, da bo njegova slika realna (prava), obrnjena in povečana? 1 3 F 1 3 F f f F 35. Predme posavimo pred konveksno (razpršilno) zrcalo ako, kakor kaže slika. Kaeri od odgovorov pravilno kaže predme ( p ) in sliko ( s )? F p s p s p s p s 36. Na negaivno naelekreno kovino sveimo z rdečo svelobo. Naboj kovine se ne spremeni. Kaj je reba spremenii, da se bo kovina razelekrila? Povečai gosoo svelobnega oka rdeče svelobe. Povečai gosoo oka in valovno dolžino svelobe, s kaero sveimo na kovino. Povečai frekvenco svelobe, s kaero sveimo na kovino. Zmanjšai gosoo svelobnega oka in povečai valovno dolžino svelobe.
14 14 M Kako se spremeni vrsno ševilo jedra pri razpadu β? Zmanjša se za ena. Zmanjša se za dva. Poveča se za ena. Poveča se za dva. 38. Kaj oddajo aomska jedra pri razpadu gama? omska jedra. Elekrone. Elekromagneno valovanje. Nevrone. 39. Kaera izmed navedenih reakcij je zlivanje jeder? H H He H +O H O U Np+ e U n a Kr n 4. Zakaj lahko s paralakso izmerimo le oddaljenosi Soncu bližjih zvezd? Ker ne moremo izmerii poljubno majhnih koov. Ker se oddaljene zvezde oddaljujejo z zelo velikimi hirosmi. Ker nobena oddaljena zvezda ne spreminja gosoe izsevanega svelobnega oka. Ker za oddaljene zvezde ne moremo izmerii spremembe frekvence svelobe zaradi oddaljevanja.
15 M PRZN STRN
16 16 M PRZN STRN
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
*M * FIZIKA. Izpitna pola 1. Četrtek, 5. junij 2008 / 90 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a a : ržavni izpini cener *M84* SPOMLNSK ZPTN ROK FZK zpina pola Čerek, 5. junij 8 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik, svinčnik
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
*M * FIZIKA. Izpitna pola 1. Sobota, 28. avgust 2010 / 90 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a a : ržavni izpini cener *M141111* FIZIK Izpina pola 1 JESENSKI IZPITNI ROK Soboa, 8. avgus 1 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik,
*M * FIZIKA. Izpitna pola 2. Ponedeljek, 8. junij 2009 / 105 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a a : Državni izpini cener *M914111* SPOMLADANSKI IZPITNI ROK FIZIKA Izpina pola Ponedeljek, 8. junij 9 / 15 minu Dovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
POLA 1: 35 vprašanj izbirnega tipa. 1. Kolikšna je povprečna masa štirih uteži, kjer imajo tri maso po 1, 06 kg, ena pa 1, 02 kg?
POL : 35 vprašanj izbirnega ipa. Kolikšna je povprečna masa širih ueži, kjer imajo ri maso po, 6 kg, ena pa, kg?, 6 kg, 5 kg, 4 kg, kg. Telo, ki sprva miruje, se v prvih dveh sekundah enakomerno pospešenega
Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
Državni izpitni center FIZIKA. Izpitna pola 2. Petek, 29. avgust 2014 / 90 minut
Š i f r a k a n d i d a a : Državni izpini cener *M14411* JESENSKI IZPITNI ROK FIZIKA Izpina pola Peek, 9. avgus 14 / 9 minu Dovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik,
*M * FIZIKA. Izpitna pola 2. Sobota, 5. junij 2004 / 105 minut. [ifra kandidata: SPOMLADANSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M414111* SPOMLADANSKI ROK FIZIKA Izpitna pola Sobota, 5. junij 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
*M * FIZIKA. Izpitna pola 2. Torek, 31. avgust 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M44111* JESENSKI ROK FIZIKA Izpitna pola Torek, 31. avgust 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Državni izpitni center FIZIKA. Izpitna pola 1. Četrtek, 28. avgust 2014 / 90 minut
Š i f r a k a n d i d a a : ržavni izpini cener *M44* JESENSKI IZPITNI ROK FIZIK Izpina pola Čerek, 8. avgus 4 / 9 minu ovoljeno gradivo in pripomočki: Kandida prinese nalivno pero ali kemični svinčnik,
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν
*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M4411* JESENSKI ROK FIZIKA Izpitna pola Sreda, 1. september 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.
ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του
Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.
Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2007 Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ
*M * FIZIKA. Izpitna pola 1. Torek, 8. junij 2010 / 90 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : ržavni izpitni center *M4* FIZIK Izpitna pola SPOMLNSKI IZPITNI ROK Torek, 8. junij / 9 minut ovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik,
ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE
ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE Θεωρητικό Μέρος REE και Περιοδικός Πίνακας H 1 Li 3 Na K Rb Cs Fr 11 19 37 55 87 Be Mg Ca Sr 4 12 20
Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας
Μάθημα 9ο Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Πολύ-ηλεκτρονιακά άτομα Θωράκιση- διείσδυση μεταβάλλει την
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Na/K (mole) A/CNK
Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA
1. Η Ανόργανη Χημεία και η εξέλιξή της
1. Η Ανόργανη Χημεία και η εξέλιξή της Σύνοψη Παρουσιάζονται οι ορισμοί της Προχωρημένης Ανόργανης Χημείας, της Χημείας Στερεάς Κατάστασης, καθώς επίσης και της Οργανομεταλλικής και Βιοανόργανης Χημείας
ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.
ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη
*M * FIZIKA. Izpitna pola 2. Četrtek, 27. avgust 2009 / 105 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M94111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 7. avgust 9 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M14111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Sobota, 8. avgust 1 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA
Š i f r a u ~ e n c a: r`avni izpitni center *N0414111* RENI ROK FIZIK PISNI PREIZKUS ^etrtek, 6. maj 004 / 45 minut ovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro ali ~rno nalivno pero oziroma
*M * FIZIKA. Izpitna pola 2. Četrtek, 5. junij 2008 / 105 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M814111* SPOMLADANSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 5. junij 8 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Statično in kinetično trenje
Sila enja Sila enja: povzoči paske na koži, vpliva na speminjanje oblike elesa,... Po dugi sani pa nam omogoči, da hodimo po povšini, vozimo avomobile, plezamo po vveh,... Lasnosi sile enja: Sila enja
Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα
Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
TEHNIŠKA FIZIKA VS Strojništvo, 1. stopnja povzetek
TEHNIŠKA FIZIKA VS Srojnišo,. sopnja pozeek. KINEMATIKA Premo gibanje To je gibanje po premici. Na premici izberemo koordinano izhodišče (o je očko, ki ji pripišemo koordinao nič) in označimo poziino in
Studies in Magnetism and Superconductivity under Extreme Pressure
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-1-2011 Studies in Magnetism and Superconductivity under Extreme Pressure Wenli Bi Washington
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
PROCESIRANJE SIGNALOV
Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
PMP ponedeljek,
[ifra kandidata: r`avni izpitni center *994* FIZIK Izpitna pola 4. september 999 / 9 minut ovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni svin~nik, svin~nik H
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ)
AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΑ ΑΚΤΝΩΝ-γ (2 o ΜΕΡΟΣ) - Μέτρηση φυσικής ρδιενέργεις - Προσδιορισµός στοιχείων µε νετρονική ενεργοποίηση Εισγωγή 1. Φυσική ρδιενέργει Η φυσική ρδιενέργει προέρχετι πό την κτινοολί (ενέργει)
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε
F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),
Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη
I. Ιδιότητες των στοιχείων Χ. Στουραϊτη ΠΕΡΙΕΧΟΜΕΝΑ 1. Περιοδικός Πίνακας 2. Χημικοί δεσμοί 3. Καταστάσεις της ύλης 4. Γεωχημικές ταξινομήσεις 5. Πυρήνας και ραδιενέργεια 6. Ασκήσεις 2 Συγγράμματα Κεφλαιο
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Li % % % % % % % % % % 3d 4s V V V V d V V V n O V V V O V n O V n O % % X X % % % 10 10 cm Li Li Li LiMO 2 Li 1 x MO 2 + xl + 1 + xe C + xl + 1 + xe Li x C LiMO 2 +C Li x C + Li 1 x MO 2
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ
ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στις φασµατοµετρικές τεχνικές ανάλυσης 2. Προετοιµασία δειγµάτων 3. ιαλυτοποίηση δειγµάτων ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΙΑΛΥΜΑΤΩΝ Ατοµική Φασµατοσκοπία
NALOGE ZA SKUPINE A, C, E, G, I, K
Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
*M * MEHANIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Četrtek, 1. junij Državni izpitni center SPLOŠNA MATURA
Držani izpini cener *M7743* SPOMLDSKI IZPITI ROK MEHIK VODIL Z OCEJEVJE Čerek,. junij 07 SPLOŠ MTUR Držani izpini cener Ve praice pridržane. M7-74--3 IZPIT POL. naloga...3.4 3 F 7000 7000 0 k 7 k Izražena
ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών
ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών Μάθημα:ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ ΔΙΔΑΣΚΩΝ: ΣΑΒΒΑΚΗΣ ΚΩΣΤΑΣ Καθηγητής ΤΕΙ Πληροφορίες Διδάσκων (Θεωρία): Κ. Σαββάκης Γραφείο
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
DELO IN ENERGIJA, MOČ
DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to
Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 3 Ÿ - ˆ ˆ Šˆ Œ ˆ Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š œ Š.. ƒμ Ê μ 1,. Œ. Ö Ê μ 1,. ˆ. ± 1, Œ.. μ É Ó 2,,.. ²μ 2, ˆ.. ˆ²ÓÎ ±μ 3 1 ƒ μ²μ Î ± É ÉÊÉ, Œμ ± 2 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 3 ÊÎ μ-
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"
ΕΛΛΗΝΙΚΗ ΑΡΧΗ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ (Ε.Α.Γ.Μ.Ε.) Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"
Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,
Ασκήσεις 1. Να γίνει η ηλεκτρονιακή δόμηση για τα ακόλουθα άτομα στη θεμελιώδη τους κατάσταση: 29Cu, 33As, 38Sr, 42Mo, 55Cs. Πόσα ηλεκτρόνια έχει η εξωτερική τους στιβάδα και πόσα ασύζευκτα ηλεκτρόνια
ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΟΡΥΚΤΟΥ (MB)
ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΟΡΥΚΤΟΥ (MB) Oρυκτό: A x B y C z A x B y C z (MB) = x*a (AB) + y*b (AB) + z*c (AB) Κοβελλίνης (Cv): CuS Ατομικά βάρη: Cu=64, S=32 Cv (ΜΒ) = Cu (AB) + S (AB) = 64 + 32 = 96 Χαλκοπυρίτης (Cp):
ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3
I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r
ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)
ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò