*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK"

Transcript

1 Š i f r a k a n d i d a t a : Državni izpitni center *M14111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Sobota, 8. avgust 1 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik, svinčnik HB ali B, radirko, šilček, računalo brez grafičnega zaslona in možnosti računanja s simboli ter geometrijsko orodje. Kandidat dobi ocenjevalni obrazec. Priloga s konstantami in enačbami je na perforiranem listu, ki ga kandidat pazljivo iztrga. SPLOŠNA MATURA NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma vpišite svojo šifro (v okvirček desno zgoraj na tej strani in na ocenjevalni obrazec). Izpitna pola vsebuje 5 strukturiranih nalog, od katerih izberite 4. Število točk, ki jih lahko dosežete, je 4; vsaka naloga je vredna 1 točk. Pri reševanju si lahko pomagate s podatki iz periodnega sistema na strani ter s konstantami in enačbami v prilogi. V preglednici z "x" zaznamujte, katere naloge naj ocenjevalec oceni. Če tega ne boste storili, bo ocenil prve štiri naloge, ki ste jih reševali Rešitve, ki jih pišite z nalivnim peresom ali s kemičnim svinčnikom, vpisujte v izpitno polo v za to predvideni prostor. Pišite čitljivo. Če se zmotite, napisano prečrtajte in rešitev zapišite na novo. Nečitljivi zapisi in nejasni popravki bodo ocenjeni z nič () točkami. Pri reševanju nalog mora biti jasno in korektno predstavljena pot do rezultata z vsemi vmesnimi računi in sklepi. Če ste nalogo reševali na več načinov, jasno označite, katero rešitev naj ocenjevalec oceni. Poleg računskih so možni tudi drugi odgovori (risba, besedilo, graf...). Zaupajte vase in v svoje zmožnosti. Želimo vam veliko uspeha. Ta pola ima strani, od tega 5 praznih. RIC 1

2 M PERIODNI SISTEM ELEMENTOV I VIII 1,1 4, H He vodik helij 1 II III IV V VI VII 6,94 9,1 relativna atomska masa 1,8 1, 14, 16, 19,, Li Be simbol B C N O F Ne litij berilij ime elementa bor ogljik dušik kisik fluor neon 3 4 vrstno število , 4,3 7, 8,1 31, 3,1 35,5 4, Na Mg Al Si P S Cl Ar natrij magnezij aluminij silicij fosfor žveplo klor argon ,1 4,1 45, 47,9 5,9 5, 54,9 55,9 58,9 58,7 63,6 65,4 69,7 7,6 74,9 79, 79,9 83,8 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr kalij kalcij skandij titan vanadij krom mangan železo kobalt nikelj baker cink galij germanij arzen selen brom kripton ,5 87,6 88,9 91, 9,9 95,9 (97) Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe rubidij stroncij itrij cirkonij niobij molibden tehnecij rutenij rodij paladij srebro kadmij indij kositer antimon telur jod ksenon (9) (1) () Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn cezij barij lantan hafnij tantal volfram renij osmij iridij platina zlato živo srebro talij svinec bizmut polonij astat radon (3) (6) (7) (61) (6) (66) (64) (69) (68) Fr Ra Ac Rf Db Sg Bh Hs Mt francij radij aktinij rutherfordij dubnij seaborgij bohrij hassij meitnerij cerij 58 3 torij prazeodim 59 (31) protaktinij neodim 6 38 uran 9 (145) prometij 61 (37) neptunij samarij 6 (44) plutonij Lantanoidi Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu evropij 63 (43) Aktinoidi Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr americij gadolinij 64 (47) kirij terbij 65 (47) berkelij disprozij 66 (51) kalifornij holmij 67 (54) einsteinij erbij 68 (57) fermij tulij 69 (58) mendelevij iterbij 7 (59) nobelij lutecij 71 (6) lavrencij 13

3 M KONSTANTE IN ENAČBE težni pospešek hitrost svetlobe osnovni naboj Avogadrovo število splošna plinska konstanta g = 9, 81 m s 8 1 c = 3, 1 m s 19 e = 1, 6 1 A s 6 1 N A = 6, 1 kmol R = 8, 31 1 J kmol K gravitacijska konstanta G 11 = 6, 67 1 N m kg influenčna konstanta indukcijska konstanta ε = 8, 85 1 A s V m μ = 4π 1 VsA m Boltzmannova konstanta k 3 1 = 1, 38 1 J K Planckova konstanta Stefanova konstanta atomska enota mase h = 6, 63 1 J s = 4,14 1 ev s 8 4 σ = 5, 67 1 W m K 7 1u = 1,66 1 kg; za m = 1 u je mc = 931,5 MeV GIBANJE s = vt s = vt at s = v t + v = v + at v = v + as 1 ω = π ν = π t v = ωr a r = ω r s = s sin ωt v = ωs cos ωt a = ω s sin ωt SILA mm F = G r t 3 r F 1 = konst. = ks F = ps F = ktfn F = ρgv F G = ma = mv FΔt = ΔG M = r F M = rf sin α p = ρgh Γ= J ω M t = Γ ENERGIJA A= F s W W k p mv = = mgh ks Wpr = A P = t A= W + W + W Δ k Δ p Δ pr A= pδv ρv p + + ρgh = konst.

4 4 M ELEKTRIKA e I = t ee F = 4 π F = ee σe ε E = 1 ε r Ae U = E s = e e σe = S e = CU ε S C = l CU We = We we = V ε E we = U = RI ζl R = S P = UI MAGNETIZEM F = Il B F = IlBsin α F = ev B μi B = π r μni B = l M = NISBsin α Φ = B S = BS cos α U i U = ωsbsin ωt i = lvb U i = Φ t L = Φ I μns L = l W LI m = w B m = μ NIHANJE IN VALOVANJE m t = π k l t = π g t = π LC c = λν Nλ sin α = d P j = S E = cb j = wc 1 j = ε E c j = jcos α v ν = ν (1 ± ) c ν ν = v 1 c TOPLOTA m n = M pv = nrt Δl = αlδt ΔV = βvδt A+ Q = ΔW Q = cmδt Q = qm 3 W = kt ΔT P = λs Δl 4 j = σt OPTIKA c n = c sin α c n = = sin β c n = + f a b 1 1 MODERNA FIZIKA W f f f min = hν W = A + W W λ Δ W i = ΔW 1/ N N N e ln λ = t n hc = eu = Δmc k t t = = 1/ A= Nλ λt

5 M Prazna stran OBRNITE LIST.

6 6 M NALOGA Pri poskusu svetimo na fotocelico s svetlobami različnih valovnih dolžin in merimo napetost, pri kateri se tok skozi fotocelico zmanjša na A mejno zaporno napetost ( U m ). Podatki, zbrani pri poskusu, so v preglednici: Zap. št. λ [ nm] U m [ V] ν [ Hz] W k [ ev] 1 565, , , , , , 976 Za fotoefekt, pojav, ki poteka v fotocelici, lahko napišemo enačbo Wf = Ai + eu m, pri čemer je maksimalna kinetična energija izbitih elektronov Wk = eu m. Upoštevajte, da je kinetična energija elektrona, ki preleti napetost 1, V, enaka: 19 W = 1e 1 V = 1 ev = 1,6 1 J k 1. Imenujte količine, ki nastopajo v enačbi: W f : A i : e : U m :. Izračunajte frekvence svetlobe ( ν ) in maksimalne kinetične energije elektronov ( W k ) za vsako meritev. V ustreznih stolpcih dopolnite preglednico z izračunanimi vrednostmi. ( točki)

7 M Narišite graf, ki kaže, kako je maksimalna kinetična energija izbitih elektronov odvisna od frekvence svetlobe. (3 točke) 4. V grafu označite dve točki in iz njunih koordinat izračunajte smerni koeficient narisane premice. Ne pozabite zapisati enote koeficienta. ( točki)

8 8 M Izračunani smerni koeficient predstavlja pomembno fizikalno konstanto. Napišite njeno oznako in ime. 6. Z grafa odčitajte in napišite izstopno delo za uporabljeno fotocelico.

9 M Prazna stran OBRNITE LIST.

10 1 M NALOGA 1. Z enačbo zapišite Newtonov gravitacijski zakon in pojasnite pomen fizikalnih količin v enačbi. Maturn je planet, ki kroži okrog daljne zvezde. Masa planeta je 5 1 kg, njegov polmer pa je 5 km. Prostornino krogle izračunamo z enačbo V 3 4πr =. 3. Z računom ugotovite, ali je povprečna gostota Maturna manjša ali večja od povprečne 3 Zemljine gostote. Povprečna gostota Zemlje je 5, 5 kg dm. ( točki) 4 Po površju Maturna se vozi majhno vesoljsko vozilo z maso 1 kg. 3. Narišite sile, ki delujejo na vesoljsko vozilo, kadar se vozi enakomerno pospešeno po vodoravnem površju Maturna. 4. Izračunajte, s kolikšno gravitacijsko silo Maturn privlači vesoljsko vozilo. ( točki)

11 M Izračunajte gravitacijski pospešek na površju Maturna. (1 točki) 6. Izračunajte, kolikšno hitrost ima telo na Maturnu po eni sekundi prostega padanja. Maturn ima en naravni satelit, ki kroži okrog njega. Satelit naredi en obhod v 15 zemeljskih dneh. 7. Kolikšna je razdalja med težiščem Maturna in težiščem njegovega satelita? ( točki)

12 1 M NALOGA 1. Zapišite splošno plinsko enačbo in poimenujte količine, ki v njej nastopajo. Na sliki je posoda s premičnim batom. Ta zagotavlja, da je v posodi tlak ves čas enak zunanjemu zračnemu tlaku 1, bar. V posodi je dušik N. Ko je temperatura plina C je njegova prostornina 3, l., V p T = 3, l = 1, bar = C. Kolikšna je masa plina v posodi? Kilomolsko maso plina dušika N poiščite v periodnem sistemu. 3. Plin segrejemo za 1 C. Koliko toplote je bilo med segrevanjem dovedeno plinu? 1 1 Specifična toplota dušika pri stalnem tlaku je 34 J kg K. 4. Izračunajte, za koliko se je povečala prostornina plina. ( točki)

13 M Koliko dela je opravil plin med raztezanjem? 6. Bat privijemo, tako da se prostornina plina med gretjem ne spreminja. Koliko toplote je treba dovesti kilogramu tega plina, da ga pri teh pogojih segrejemo za 1, C? Ena tisočinka atomov dušika v posodi je radioaktivni izotop dušika 13 7N, ki razpada z razpadom β Zapišite jedrski razpad jedra 13 7N. Na spodnje črte zapišite ustrezne razpadne produkte. Če je razpadni produkt jedro, zapišite poleg imena tudi njegovo masno in vrstno število. Pomagajte si s priloženim periodnim sistemom. 13 β + 7N Kolikšna je aktivnost plina v posodi, če je razpolovni čas radioaktivnega dušika 1 minut? ( točki)

14 14 M NALOGA 1. Z enačbo zapišite izraz za gostoto magnetnega polja v okolici ravnega vodnika in pojasnite pomen količin, ki nastopajo v izrazu. Iz žice naredimo okvir v obliki črke U in konca žice priključimo na baterijo. Dimenzije žičnega okvirja in priključitev na baterijo so prikazane na sliki. Vsak meter žice ima upor, Ω, gonilna napetost baterije je 6, V, njen notranji upor pa je, 15 Ω.. Izračunajte upor žičnega okvirja, ki je priključen na baterijo Izračunajte tok, ki teče po žičnem okvirju. 5 cm A 3, m, 1 m 4. Izračunajte električno moč, ki jo porablja žični okvir.

15 M Točka A leži v ravnini žičnega okvirja in je 5 cm oddaljena od leve navpične stranice okvirja, kakor kaže slika. 5. Izračunajte gostoto magnetnega polja, ki ga v točki A ustvarja tok, ki teče po desni stranici žičnega okvirja. 6. Slika prikazuje navpični žici okvirja v prerezu. Na sliki narišite vektor gostote magnetnega polja, ki ga v točki A ustvarja tok po obeh navpičnih žicah. Odgovor pojasnite. ( točki) A 7. Izračunajte velikost celotne gostote magnetnega polja, ki ga v točki A ustvarja tok po obeh navpičnih žicah. ( točki) V ravnino žičnega okvirja dodamo še en enak okvir, tako kakor kaže slika. Točka A je enako oddaljena od obeh okvirjev. Dodani okvir je priključen na enako baterijo kakor prvi, le priključka baterije sta zamenjana Kolikšna je v tem primeru gostota magnetnega polja v točki A? Odgovor podprite z računom ali pojasnite z besedami. A

16 16 M NALOGA 1. Z enačbo zapišite zvezo med valovno dolžino in frekvenco valovanja. Pojasnite količine, ki v enačbi nastopajo. Ob jasnem vremenu piha veter in povzroča valove na morski gladini. Valovi imajo valovno dolžino 1 m in frekvenco, 5 Hz.. Kolikšna je hitrost potovanja valov? Valovi zadenejo na podvodno stopnico in potujejo naprej po plitvejši vodi. V plitvi vodi je hitrost potovanja valov le polovica začetne hitrosti. 3. Kolikšna je frekvenca valovanja na plitvem območju? 4. Kolikšna je valovna dolžina valovanja na plitvem območju? Valovanje pada na stopnico pod kotom 35. Na sliki je prikazan vpadni del valovanja. Za prehod valovanja prek stopnice velja lomni zakon.

17 M Sliko na prejšnji strani dopolnite tako, da narišete valovanje po prehodu stopnice. Valovanje označite z valovnimi črtami. Označite tudi smer širjenja vpadnega in smer lomljenega valovanja. 6. Izračunajte lomni kot, to je kot, ki ga oklepa smer širjenja valovanja v plitvi vodi s pravokotnico na smer podvodne stopnice. ( točki) Valovanje pada na pomol, ki ima dve majhni odprtini, kakor kaže slika. Razdalja med odprtinama je enaka dvakratni valovni dolžini. 7. Na sliko narišite, kako se širi valovanje za pomolom. Narišite valovne črte in označite pasove ojačitev. ( točki) 8. Izračunajte, v kateri smeri za pomolom nastane 1. stranska ojačitev valovanja?

18 18 M Prazna stran

19 M Prazna stran

20 M Prazna stran

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Četrtek, 27. avgust 2009 / 105 minut JESENSKI IZPITNI ROK

*M * FIZIKA. Izpitna pola 2. Četrtek, 27. avgust 2009 / 105 minut JESENSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M94111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 7. avgust 9 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Četrtek, 5. junij 2008 / 105 minut SPOMLADANSKI IZPITNI ROK

*M * FIZIKA. Izpitna pola 2. Četrtek, 5. junij 2008 / 105 minut SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M814111* SPOMLADANSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 5. junij 8 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK

*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični

Διαβάστε περισσότερα

*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK

*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK

*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali

Διαβάστε περισσότερα

*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK

*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK

*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK [ifra kandidata: Dr `avni i zpitni center *M4411* JESENSKI ROK FIZIKA Izpitna pola Sreda, 1. september 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Sobota, 5. junij 2004 / 105 minut. [ifra kandidata: SPOMLADANSKI ROK

*M * FIZIKA. Izpitna pola 2. Sobota, 5. junij 2004 / 105 minut. [ifra kandidata: SPOMLADANSKI ROK [ifra kandidata: Dr `avni i zpitni center *M414111* SPOMLADANSKI ROK FIZIKA Izpitna pola Sobota, 5. junij 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Torek, 31. avgust 2004 / 105 minut. [ifra kandidata: JESENSKI ROK

*M * FIZIKA. Izpitna pola 2. Torek, 31. avgust 2004 / 105 minut. [ifra kandidata: JESENSKI ROK [ifra kandidata: Dr `avni i zpitni center *M44111* JESENSKI ROK FIZIKA Izpitna pola Torek, 31. avgust 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni

Διαβάστε περισσότερα

*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK

*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P113C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Torek, 7. februar 01 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( )

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( ) Š i f r a k a n d i d a t a : Državni izpitni center *M10277111* JESENSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Ponedeljek, 30. avgust 2010 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν

Διαβάστε περισσότερα

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών

Διαβάστε περισσότερα

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

*M * ELEKTROTEHNIKA. Izpitna pola. Četrtek, 29. maj 2008 / 180 minut ( ) SPOMLADANSKI IZPITNI ROK

*M * ELEKTROTEHNIKA. Izpitna pola. Četrtek, 29. maj 2008 / 180 minut ( ) SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M08177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 9. maj 008 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2007 Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 1. Torek, 8. junij 2010 / 90 minut SPOMLADANSKI IZPITNI ROK

*M * FIZIKA. Izpitna pola 1. Torek, 8. junij 2010 / 90 minut SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : ržavni izpitni center *M4* FIZIK Izpitna pola SPOMLNSKI IZPITNI ROK Torek, 8. junij / 9 minut ovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic. ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE

ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE Θεωρητικό Μέρος REE και Περιοδικός Πίνακας H 1 Li 3 Na K Rb Cs Fr 11 19 37 55 87 Be Mg Ca Sr 4 12 20

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola Š i f r a k a n d i d a t a : Državni izpitni center *M09177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Sreda, 7. maj 009 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

*M * K E M I J A. Izpitna pola 2. Četrtek, 30. avgust 2007 / 90 minut JESENSKI ROK

*M * K E M I J A. Izpitna pola 2. Četrtek, 30. avgust 2007 / 90 minut JESENSKI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M07243112* JESENSKI ROK K E M I J A Izpitna pola 2 Četrtek, 30. avgust 2007 / 90 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας

Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Μάθημα 9ο Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Πολύ-ηλεκτρονιακά άτομα Θωράκιση- διείσδυση μεταβάλλει την

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora [ifra kandidata: Dr`avni izpitni center *P071C10111* SPOMLADANSKI ROK MATEMATIKA Izpitna pola Sobota,. junij 007 / 10 minut brez odmora Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

1. Η Ανόργανη Χημεία και η εξέλιξή της

1. Η Ανόργανη Χημεία και η εξέλιξή της 1. Η Ανόργανη Χημεία και η εξέλιξή της Σύνοψη Παρουσιάζονται οι ορισμοί της Προχωρημένης Ανόργανης Χημείας, της Χημείας Στερεάς Κατάστασης, καθώς επίσης και της Οργανομεταλλικής και Βιοανόργανης Χημείας

Διαβάστε περισσότερα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν

Διαβάστε περισσότερα

FIZIKA NAVODILA ZA OCENJEVANJE

FIZIKA NAVODILA ZA OCENJEVANJE Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C 0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj

Διαβάστε περισσότερα

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Studies in Magnetism and Superconductivity under Extreme Pressure

Studies in Magnetism and Superconductivity under Extreme Pressure Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-1-2011 Studies in Magnetism and Superconductivity under Extreme Pressure Wenli Bi Washington

Διαβάστε περισσότερα

ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ

ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στις φασµατοµετρικές τεχνικές ανάλυσης 2. Προετοιµασία δειγµάτων 3. ιαλυτοποίηση δειγµάτων ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΙΑΛΥΜΑΤΩΝ Ατοµική Φασµατοσκοπία

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š

Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 3 Ÿ - ˆ ˆ Šˆ Œ ˆ Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š œ Š.. ƒμ Ê μ 1,. Œ. Ö Ê μ 1,. ˆ. ± 1, Œ.. μ É Ó 2,,.. ²μ 2, ˆ.. ˆ²ÓÎ ±μ 3 1 ƒ μ²μ Î ± É ÉÊÉ, Œμ ± 2 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 3 ÊÎ μ-

Διαβάστε περισσότερα

I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη

I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη I. Ιδιότητες των στοιχείων Χ. Στουραϊτη ΠΕΡΙΕΧΟΜΕΝΑ 1. Περιοδικός Πίνακας 2. Χημικοί δεσμοί 3. Καταστάσεις της ύλης 4. Γεωχημικές ταξινομήσεις 5. Πυρήνας και ραδιενέργεια 6. Ασκήσεις 2 Συγγράμματα Κεφλαιο

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola Š i f r a k a n d i d a t a : Državni izpitni center *M07177111* SPOMLADANSKI ROK ELEKTROTEHNIKA Izpitna pola Sobota, 9. junij 2007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ)

µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ) AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΑ ΑΚΤΝΩΝ-γ (2 o ΜΕΡΟΣ) - Μέτρηση φυσικής ρδιενέργεις - Προσδιορισµός στοιχείων µε νετρονική ενεργοποίηση Εισγωγή 1. Φυσική ρδιενέργει Η φυσική ρδιενέργει προέρχετι πό την κτινοολί (ενέργει)

Διαβάστε περισσότερα

Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,

Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6, Ασκήσεις 1. Να γίνει η ηλεκτρονιακή δόμηση για τα ακόλουθα άτομα στη θεμελιώδη τους κατάσταση: 29Cu, 33As, 38Sr, 42Mo, 55Cs. Πόσα ηλεκτρόνια έχει η εξωτερική τους στιβάδα και πόσα ασύζευκτα ηλεκτρόνια

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις Ακολουθώντας τους κανόνες δόμησης των πολυηλεκτρονιακών ατόμων που αναπτύχθηκαν παραπάνω, θα διαπιστώσουμε ότι σε ορισμένες περιπτώσεις παρατηρούνται αποκλίσεις

Διαβάστε περισσότερα

Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"

Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου ΕΛΛΗΝΙΚΗ ΑΡΧΗ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ (Ε.Α.Γ.Μ.Ε.) Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα