Μελετήστε την θεωρία που αφορά Επαναληπτικές Μεθόδους Επίλυσης Γραμμικών Συστημάτων.
|
|
- Τηθύς Αλιβιζάτος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΗΥ213 Αριθμητική Ανάλυση Εργαστήριο 7 Οδηγίες για προετοιμασία Διαβάστε και εκτελέστε όλα τα προηγούμενα εργαστήρια. Μελετήστε την θεωρία που αφορά Επαναληπτικές Μεθόδους Επίλυσης Γραμμικών Συστημάτων. Κατά τη διάρκεια του εργαστηρίου Ανοίξτε τον chrome και επισκευτείτε το socrative.com (ROOM: HY213ΤΜΗΜΑ* με λατινικούς χαρακτήρες, ΝΑΜΕ: ΑΕΜ) ΗΥ213ΤΜΗΜΑ5 ΗΥ213ΤΜΗΜΑ1 ΗΥ213ΤΜΗΜΑ2 ΗΥ213ΤΜΗΜΑ3 ΗΥ213ΤΜΗΜΑ4 8:30 10:00 10:00-11:30 11:30 1:00 1:00-2:30 2:30 4:00 Ανοίξτε το αρχείο των γενικών οδηγιών και ακολουθείστε όλα τα βήματα με σωστό τρόπο. Δημιουργείστε αρχείο τύπου diary. Από την ιστοσελίδα του μαθηματος κατεβάστε το σημερινό εργαστήριο (lab07_test.zip). Αφού το κατεβάσετε, το αποθηκεύετε στον προσωπικό σας χώρο στο server, στο γενικό folder του μαθήματος (./CE213/lab07_test) που έχετε δημιουργήσει. Μελετείστε τον ημιτελή κώδικα στα αρχεία και συμπληρώστε τα ώστε να ικανοποιούνται όλες τις απαιτήσεις που γράφονται μέσα σε αυτό σε σχόλια. Αφού περάσετε τη φάση της διόρθωσης των συντακτικών σφαλμάτων και τρέχει ο κώδικάς σας, τρέξτε τα προγράμματα checkandgrade*(aem) στο ίδιο folder με την άσκηση σας και με όρισμα το ΑΕΜ σας. Σαν αποτέλεσμα θα πάρετε στην οθόνη, επιμέρους και τελικό βαθμό στην προσπάθειά σας και ένα κωδικό που θα δηλώσετε στο socrative μαζί με τα αποτελέσματά σας, πριν φύγετε από το εργαστήριο. Κάντε τις απαραίτητες διορθώσεις για να πάρετε σωστά αποτελέσματα και ξανατρέξτε τα checkandgrade* όσες φορές χρειαστεί. Βεβαιωθείτε ότι : - περάσατε στο socrative ότι σας ζητείται και τον κωδικό σας από την κάθε μια checkandgrade. - ανεβάσατε τη σημερινή δουλειά σας στο eclass (βλ. το αρχείο «γενικές οδηγίες».pdf) Άσκηση 1. Τεχνικές οδηγίες Συμπληρώστε τον κώδικα που λείπει. Μην τροποποιησετε συμππληρωμενο κώδικα. Για να βεβαιωθείτε ότι κάνετε σωστά τις πράξεις, δοκιμάστε να τρέξετε την συνάρτηση με αρχικές τιμές δίπλα σε ρίζες, ώστε να παρατηρείτε άμεσα ότι η λύση που υπολογίζετε είναι σωστή. Ωστόσο, η συνάρτηση πρέπει να τρέχει για γενικό και τυχαίο x0. Αφού περάσετε τη φάση της διόρθωσης των συντακτικών σφαλμάτων και τρέχει ο κώδικάς σας, τρέξτε το πρόγραμμα checkandgrade(aem) στο ίδιο folder με την άσκηση σας και με όρισμα το ΑΕΜ σας. Σαν αποτέλεσμα θα πάρετε στην οθόνη, επιμέρους και τελικό βαθμό στην προσπάθειά σας και ένα κωδικό που θα δηλώσετε στο socrative μαζί με τα αποτελέσματά σας, πριν φύγετε από το εργαστήριο. Κάντε τις απαραίτητες διορθώσεις για να πάρετε σωστά αποτελέσματα και ξανατρέξτε το checkandgrade όσες φορές χρειαστεί.
2 Βεβαιωθείτε ότι περάσατε στο socrative τα τελευταία αποτελέσματα από την συνάρτησή σας και την checkandgrade. Ουσιαστικές οδηγίες Η άσκηση έχει σκοπό να σας βοηθήσει να υλοποιήσετε σωστά τη Newton και να κατανοήσετε τη συμπεριφορά της για τη συνάρτηση f(x) = x 2 sin(x) η οποία έχει απλές και πολλαπλές ρίζες στο διάστημα [-2π, 2π]. Σχεδιάστε την συνάρτηση για να βεβαιωθείτε για το που βρίσκονται οι ρίζες τις. Υλοποιήστε τη συνάρτηση newton με ορίσματα εισαγωγής x0, tol, maxiter (με αυτή τη σειρά). Θα επιστρέφει xstar, fxstar, iter (με αυτή τη σειρά). Στη συνάρτησή σας θα πρέπει να πραγματοποιείτε όλους τους ελέγχους με χρήση των maxiter και tol. Δηλαδή: - Πλήθος επαναλήψεων <= maxiter - Διαφορά διαδοχικών προσεγγίσεων < tol - Τιμή της συνάρτησης στην τελευταία προσέγγιση < tol Οπου χρειαστείτε σύγκριση με 0, χρησιμοποιήστε το tol στη θέση του 0. Περισσότερες οδηγίες στο newton_m. Δοκιμάστε τη συνάρτησή σας χρησιμοποιώντας το main.m, με x0 = 0, 0.5, 2.3, 2.33, 5.0, 5.5 (διαφορετικές τιμές) tol = 1e-10 maxiter = 20 Σχήμα 1. Η γραφική παράσταση της συγκεκριμένης συνάρτησης
3 Σχήμα 1.1 Αρχική τιμή 5 (μαύρο τετράγωνο), ενδιάμεσες (πράσινα ο) και τελική προσέγγιση της ρίζας (κόκκινο*). x0 = 5 NEWTON: H riza vre8hke se 6 epanalhpseis. Σχήμα 1.2 Αρχική τιμή 0.5 (μαύρο τετράγωνο), ενδιάμεσες (πράσινα ο) και τελική προσέγγιση της ρίζας (κόκκινο*). x0 = 0.5 NEWTON: H riza vre8hke se 17 epanalhpseis.
4 Άσκηση 2 Τεχνικές οδηγίες Συμπληρώστε τον κώδικα που λείπει. Μην τροποποιησετε συμππληρωμενο κώδικα. Για να βεβαιωθείτε ότι κάνετε σωστά τις πράξεις, δοκιμάστε να τρέξετε την συνάρτηση σας με αρχικές τιμές δίπλα σε ρίζες, ώστε να παρατηρείτε άμεσα ότι η λύση που υπολογίζετε είναι σωστή. Ωστόσο, η συνάρτηση πρέπει να τρέχει για γενικό και τυχαίο x0 (στηλοδιάνυσμα στο Matlab). Αφού περάσετε τη φάση της διόρθωσης των συντακτικών σφαλμάτων και τρέχει ο κώδικάς σας, τρέξτε το πρόγραμμα checkandgrade2(aem) στο ίδιο folder με την άσκηση σας και με όρισμα το ΑΕΜ σας. Σαν αποτέλεσμα θα πάρετε στην οθόνη, επιμέρους και τελικό βαθμό στην προσπάθειά σας και ένα κωδικό που θα δηλώσετε στο socrative μαζί με τα αποτελέσματά σας, πριν φύγετε από το εργαστήριο. Κάντε τις απαραίτητες διορθώσεις για να πάρετε σωστά αποτελέσματα και ξανατρέξτε το checkandgrade2 όσες φορές χρειαστεί. Βεβαιωθείτε ότι περάσατε στο socrative τα τελευταία αποτελέσματα από την συνάρτησή σας και την checkandgrade2. Ουσιαστικές οδηγίες Συμπληρώστε σωστά την newton2.m έτσι ώστε να λύνει το σύστημα των μη γραμμικών εξισώσεων -4x + 2x 2 2y 3 = -1 4x 4 + 4y + 4y 4 = 4 Υλοποιήστε τη συνάρτηση newton2 με ορίσματα εισαγωγής x0, tol, maxiter (με αυτή τη σειρά). Θα επιστρέφει xstar, fxstar, iter (με αυτή τη σειρά). Στη συνάρτησή σας θα πρέπει να πραγματοποιείτε όλους τους ελέγχους με χρήση των maxiter και tol. Δηλαδή: - Πλήθος επαναλήψεων <= maxiter - Διαφορά διαδοχικών προσεγγίσεων < tol - Τιμή της συνάρτησης στην τελευταία προσέγγιση < tol Χρησιμοποιήστε το main2.m για να δοκιμάσετε τη συνάρτησή σας, με αρχική τιμή, μεταξύ άλλων, το [ ] το [ ] και [ ]. Όπου χρειαστείτε σύγκριση με 0, χρησιμοποιήστε το tol στη θέση του 0. Όπου χρειαστείτε νόρμα, χρησιμοπιήστε την Ευκλείδια νόρμα. Τι ρίζες παίρνετε σε κάθε περίπτωση;
5 Σχήμα 2.0 Οι δυο συναρτήσεις των οποίων θέλουμε να βρούμε τις ρίζες. Αριστερά η συνάρτηση από την 1 η εξίσωση. Δεξιά η συνάρτηση από τη 2 η εξίσωση. Σχήμα 2.1 Ισοϋψείς καμπύλες των συναρτήσεων για τις τιμές - 1 (μπλε), 0 (πράσινο) και 1(κόκκινο). Η τομή των πράσινων καμπύλων υποδεικνύει τις ρίζες του συστήματος. >> [X,Y] = meshgrid(-2:.005:2); >> R = 1-4*X+2*X.*X-2*Y.^3; >> Z = -4 +4*X.^4+4*Y+4*Y.^4; >> contour(x,y,r,[-1 0 1]);hold on; [C,h] = contour(x,y,z,[-1 0 1]); >> set (h, 'ShowText','on','TextStep',get(h,'LevelStep')*1) >> grid
6 Σχήμα 3. Αρχική τιμή [ ] (μαύρο ο*). Ενδιάμεσες (magenta + ). Τελική προσέγγιση με κόκκινο ο*. x0 =[ ]'; NEWTON: H riza ( ) vre8hke se 5 epanalhpseis. Σχήμα 4. Αρχική τιμή [1-0.5] (μαύρο ο*). Ενδιάμεσες (magenta + ). Τελική προσέγγιση με κόκκινο ο*. x0 =[1-0.5]'; NEWTON: H riza ( ) vre8hke se 5 epanalhpseis.
7 Σχήμα 5. Αρχική τιμή [1-0.2] (μαύρο ο*). Ενδιάμεσες (magenta + ). Τελική προσέγγιση με κόκκινο ο*. x0 =[1-0.2]'; NEWTON: H riza ( ) vre8hke se 20 epanalhpseis. (Η τελευταία προσέγγιση έχει απομακρυνθεί τόσο πολύ από την ρίζα που δεν φαίνεται στη γραφική παράσταση.)
Μελετήστε την θεωρία που αφορά Επαναληπτικές Μεθόδους Επίλυσης Γραμμικών Συστημάτων.
ΗΥ213 Αριθμητική Ανάλυση Εργαστήριο 8-9 Οδηγίες για προετοιμασία Διαβάστε και εκτελέστε όλα τα προηγούμενα εργαστήρια. Μελετήστε την θεωρία που αφορά Επαναληπτικές Μεθόδους Επίλυσης Γραμμικών Συστημάτων.
Ανοίξτε τον chrome και επισκευτείτε το socrative.com (ROOM: HY213ΤΜΗΜΑ* με λατινικούς χαρακτήρες, ΝΑΜΕ: ΑΕΜ)
ΗΥ213 Αριθμητική Ανάλυση Εργαστήριο 10 Οδηγίες για προετοιμασία Διαβάστε και εκτελέστε όλα τα προηγούμενα εργαστήρια. Μελετήστε την θεωρία που αφορά Αριθμητική Παραγώγιση και Ολοκλήρωση. Κατά τη διάρκεια
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ
Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται
Οδηγός χρήσης της διαδικτυακής πλατφόρμας μάθησης E.CO Lab Technician
E.CO Lab Technician Platform Guidelines Pg 1 Οδηγός χρήσης της διαδικτυακής πλατφόρμας μάθησης E.CO Lab Technician 1. Πρόσβαση στην πλατφόρμα και επιλογή γλώσσας Ακολουθήστε το σύνδεσμο: http://ecvetlearn.projectsgallery.eu
ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Ορισμός
ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση δομών ελέγχου και βρόχων. Διαβάστε προσεχτικά το πρόβλημα
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς
Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα
Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το
Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης
Φύλλα εργασίας MicroWorlds Pro Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο Β. Χ. Χρυσοχοΐδης Πρόεδρος Συλλόγου Εκπαιδευτικών Πληροφορικής Φλώρινας 2 «Σχεδίαση και ανάπτυξη δραστηριοτήτων
Φύλλο εργασίας 1 Εισαγωγή στη Ρομποτική
Φύλλο εργασίας 1 Εισαγωγή στη Ρομποτική Χωριστείτε σε ομάδες 2-3 ατόμων και απαντήστε στις ερωτήσεις του φύλλου εργασίας. Δραστηριότητα 1 Συζητήστε με τα μέλη της ομάδας σας και γράψτε μια λίστα με ρομποτικές
Hase οδηγίες χρήσης.
Hase οδηγίες χρήσης. Το Hase είναι ένα πρόγραμμα προσομοίωσης που έχει αναπτυχθεί στο πανεπιστήμιο του Εδιμβούργου (http://www.icsa.inf.ed.ac.uk/research/groups/hase/) και μπορεί να χρησιμοποιηθεί για
Φύλλο Εργασίας για την y=αx 2
Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε
7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή
7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας
3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι
Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Hase οδηγίες χρήσης.
Hase οδηγίες χρήσης. Το Hase είναι ένα πρόγραμμα προσομοίωσης που έχει αναπτυχθεί στο πανεπιστήμιο του Εδιμβούργου (http://www.icsa.inf.ed.ac.uk/research/groups/hase/) και μπορεί να χρησιμοποιηθεί για
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ. Μέρος 2ο ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ Μέρος 2ο ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Παραμετρικές Εξισώσεις Παραμετρικές Εξισώσεις Άσκηση 1 Άσκηση 1 Λύση: (αριστερόστροφη) Άσκηση 1 Άσκηση
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
Θέματα Εξετάσεων Σεπτεμβρίου 2010:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες Στο επίπεδο, ορίζεται χωρίο που περικλείεται από τον άξονα των δηλ. την οριζόντια ευθεία που
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί
Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών ΤΗΜΜΥ Α.Π.Θ 2015-2016 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ.
Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών 5 Εξάμηνο ΤΗΜΜΥ Α.Π.Θ 2015-2016 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ DS Prximity Το παιχνίδι Το Prximity είναι ένα παιχνίδι στρατηγικής,
METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας
Εργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι-αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ. Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014
Περίληψη. ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ Μαρία Α. Λευτάκη 1 & Ευάγγελος Π. Βαλάρης 1 Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014 Μια απλή μη γραμμική
Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία.
Άσκηση #4 Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Βαθμολογούνται: 1. Η αποτελεσματική επίλυση του προβλήματος. Δηλ σωστή υλοποίηση
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
ΣΕΤ ΑΣΚΗΣΕΩΝ 2. Προθεσµία: 15/11/09, 23:59
ΣΕΤ ΑΣΚΗΣΕΩΝ 2 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2009-20010 Προθεσµία: 15/11/09, 23:59 Στόχοι Χρήση συναρτήσεων Χρήση µονοδιάστατων πινάκων Διαχείριση συµβολοσειρών Φορµαρισµένη έξοδος δεδοµένων
Μαθήματα Scratch -Δραστηριότητα 1 Παλέτα Κίνηση
Μάθημα: Scrtach Τάξη: Ε/ΣΤ Παλέτα Κίνηση Προετοιμασία για το μάθημα: Καλό είναι πριν ξεκινήσουμε να παρακολουθήσουμε τα παρακάτω δύο videos: a) Εισαγωγή στο περιβάλλον του Scratch β) Εντολές κίνησης και
ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ
1 η θεματική ενότητα: Εφαρμογές του εκπαιδευτικού λογισμικού IP 2005 ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα δραστηριότητας: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Μάθημα και Τάξη στην Φυσική Γενικής Παιδείας Β Λυκείου οποία
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f
f(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Προγραµµατισµός Ι ΕΡΓΑΣΤΗΡΙΟ 2 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 2 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-2013 Στόχοι Τελεστές, σταθερές Πριν ξεκινήσετε Βήµα 1: Πηγαίνετε στο φάκελο ce120 και κατασκευάστε µέσα σε αυτόν ένα φάκελο µε όνοµα lab2.
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1. Θέμα εργαστηρίου: Εισαγωγή στην Python και στο IDLE
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1 Θέμα εργαστηρίου: Εισαγωγή στην Python και στο IDLE Περιεχόμενο εργαστηρίου: - Το περιβάλλον ανάπτυξης προγραμμάτων IDLE - Διαδικασία ανάπτυξης προγραμμάτων Python - Απλά προγράμματα
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Εισαγωγή στο Πρόγραμμα Maxima
Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας
Βασικές Εντολές MicroWorlds Pro.
Βασικές Εντολές MicroWorlds Pro. 1. μπροστά (μπ) αριθμός Μετακινεί τη χελώνα προς τα εμπρός. π.χ. μπροστά 100 2. πίσω (πι) αριθμός Μετακινεί τη χελώνα προς τα πίσω. π.χ. πι 30 3. δεξιά (δε) αριθμός Στρέφει
ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ
490 ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ Θεόδωρος Πολίτης Φυσικός, Εκπαιδευτικός Δευτεροβάθμιας Εκπ/σης politis@mail.gr ΠΕΡΙΛΗΨΗ Αφετηρία για την κατασκευή της δραστηριότητας ήταν η δυσκολία
Ενότητα 5: ΜΕΤΑΒΛΗΤΕΣ
Ενότητα 5: ΜΕΤΑΒΛΗΤΕΣ Οι Μεταβλητές στον Προγραμματισμό Οι μεταβλητές είναι θέσεις μνήμης που έχουν κάποιο όνομα. Όταν δίνω τιμή σε μία μεταβλητή, ουσιαστικά, αποθηκεύουμε στη μνήμη αυτή τον αριθμό που
ΤΟ ΟΡΙΟ ΜΕ ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΛΟΓΙΣΜΙΚΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ.
372 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΟΡΙΟ ΜΕ ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΛΟΓΙΣΜΙΚΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Ζάφειρας Παναγιώτης Μαθηματικός Β θμιας Εκπ., Επιμορφωτής Ενδοσχολικής Επιμόρφωσης pzafeir@sch.gr http://users.sch.gr/pzafeir
Άσκηση εφαρμογής της μεθόδου Newton Raphson
Άσκηση εφαρμογής της μεθόδου Newton Raphson Η ακόλουθη αντίδραση πραγματοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστημα φτάσει σε ισορροπία στους 600Κ και 10 atm, τα μοριακά
Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός
Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει
8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Στο παρόν κεφάλαιο θα ασχοληθούμε με μεθόδους επίλυσης εξισώσεων την μορφής f(x) = 0. Αναζητούμε μια ακολουθία { n} n 0 x προσεγγίσεων της λύσης, έτσι ώστε lim x = n =
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας απευθύνεται σε μαθητές και δασκάλους όλων των βαθμίδων!
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας απευθύνεται σε μαθητές και δασκάλους όλων των βαθμίδων! Επ ιτρέπ ει τη σχεδίαση και το χειρισμό γεωμετρικών αντικειμένων απ ό τα απ λά έως τα π ιο π ερίπ λοκα
Ορισμός παραγώγου Εξίσωση εφαπτομένης
9 Ορισμός παραγώγου Εξίσωση εφαπτομένης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ι Ορισμός παράγωγου αριθμού Ορισμός 1 Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, αν f( f( υπάρχει
25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999
5 Λυμένα α θέματα Άλγεβρας από την Τράπεζα Θεμάτων 1 ο GI_A_ALG 999 α) Με πράξεις βρίσκουμε: Δ=1, χ 1 = και χ =3. Άρα χ - 5χ + 6 = (χ-)(χ-3) β) (i) Πρέπει χ - 5χ + 6 0. Άρα (χ-)(χ-3) 0, οπότε χ και χ 3,
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
6 η Δραστηριότητα στο MicroWorlds Pro (1)
6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,
Προγραµµατισµός Ι ΕΡΓΑΣΤΗΡΙΟ 5 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 5 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-2013 Στόχοι Συµβολοσειρές, πίνακες Πριν ξεκινήσετε Βήµα 1: Πηγαίνετε στο φάκελο ce120 και κατασκευάστε µέσα σε αυτόν ένα φάκελο µε όνοµα
Πίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
Προγραµµατισµός Ι ΕΡΓΑΣΤΗΡΙΟ 5 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 5 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-2013 Στόχοι Συµβολοσειρές, πίνακες Πριν ξεκινήσετε Βήµα 1: Πηγαίνετε στο φάκελο ce120 και κατασκευάστε µέσα σε αυτόν ένα φάκελο µε όνοµα
γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΣΥΝΟΛΟ
Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»
«Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο
Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών ΤΗΜΜΥ Α.Π.Θ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. DS Gomoku.
Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών 5 Εξάμηνο ΤΗΜΜΥ Α.Π.Θ 2014-2015 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ DS Gmku Το παιχνίδι Το φετινό παιχνίδι αποτελεί μια απλουστευμένη
1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα
Ταυτότητα εκπαιδευτικού σεναρίου
Ταυτότητα εκπαιδευτικού σεναρίου Τίτλος: Συμβάντα και ενέργειες - Το πολύχρωμο σκαθάρι Σύντομη περιγραφή: Ένα εκπαιδευτικό σενάριο για την διδασκαλία των συμβάντων και ενεργειών στον προγραμματισμό, με
Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,
Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης)
Ονοµατεπώνυµο:.... Τάξη: ΕΠΑ.Λ Τµήµα:. Ηµεροµηνία:.. 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης) Ανοίξτε την προσοµοίωση EOEK_a.ip, που βρίσκεται στο φάκελο µε τίτλο ιδακτική
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Πρότυπο FDDI
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Πρότυπο FDDI ΗΜ/ΝΙΑ : 01/01/2004 ΤΑΞΗ : 2Π Τμήμα : 1 Αριθμός μαθητών : 20 Μάθημα 12.1 Ώρες που διατίθενται : 2 Λογισμικό που χρησιμοποιείται: Internet Explorer Περιγραφή : Το Περιβάλλον
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Παράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα;
Τελεστές, συνθήκες και άλλα! Όπως έχει διαφανεί από όλα τα προηγούμενα παραδείγματα, η κατασκευή κατάλληλων συνθηκών στις εντολές εάν, εάν αλλιώς, για πάντα εάν, περίμενε ώσπου, επανέλαβε ώσπου, είναι
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
1.1. Κινηματική Ομάδα Δ.
1.1.41. Μια μπάλα κινείται. 1.1. Ομάδα Δ. Στο παραπάνω σχήμα φαίνεται μια μπάλα που κινείται ευθύγραμμα, κατά μήκος ενός χάρακα, ενώ στο διτο χρόνο. πλανό σχήμα δίνεται η γραφική παράσταση της θέσης της
Διαδικασία σύνδεσης στην εφαρμογή TAVL
Διαδικασία σύνδεσης στην εφαρμογή TAVL Αγαπητέ πελάτη, Αρχικά θα θέλαμε να σας ευχαριστήσουμε για την εμπιστοσύνη που μας δείξατε, και επιλέξατε εμάς για την παρακολούθηση των οχημάτων σας. Παρακάτω, θα
Non Linear Equations (2)
Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page
Κεφάλαιο 6: Ζωγραφική
Κεφάλαιο 6: Ζωγραφική... Σε αυτό το κεφάλαιο: 6.1 Ζωγραφική 6.2 Απλά ζωγράφισε 6.3 Χρώμα, σκιά και μέγεθος 6.4 Παράδειγμα... «Ζωγραφίζω πράγματα που σκέφτομαι, όχι πράγματα που βλέπω!» (Πικάσο) 6.1 Ζωγραφική
Περι-γράφοντας... βρόχους
Όνομα(τα): Όνομα Η/Υ: Σ Τμήμα: Ημερομηνία: Περι-γράφοντας... βρόχους Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ05: Επανάληψη και επιλέξτε την πρώτη δραστηριότητα (Περι-γράφοντας...
Τι χρειάζεται ένας φοιτητής για τη σωστή παρακολούθηση και συμμετοχή στο μαθημα;
Εισαγωγή Τι χρειάζεται ένας φοιτητής για τη σωστή παρακολούθηση και συμμετοχή στο μαθημα; 1. Σελίδα μαθήματος Εγγραφή Ο κάθε φοιτητής πρέπει να κάνει εγγραφή στη σελίδα του μαθήματος στην πλατφόρμα e-class
Εξισώσεις-Ανισώσεις. Δείκτες επιτυχίας: Τι θα μάθουμε: Περιεχόμενα Ενότητας. Αναπαριστούν γραφικά τη συνάρτηση
ΕΝΟΤΗΤΑ 6: Συνάρτηση f(x) = ax 2 + βx + γ Ενδεικτικός Προγραμματισμός 23 περίοδοι Εξισώσεις-Ανισώσεις Δείκτες επιτυχίας: Αναπαριστούν γραφικά τη συνάρτηση y = ax 2 + βx + γ και αναγνωρίζν πώς προκύπτει
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
ΣΕΤ ΑΣΚΗΣΕΩΝ 3. Προθεσµία: 7/1/2014, 22:00
ΣΕΤ ΑΣΚΗΣΕΩΝ 3 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Προθεσµία: 7/1/2014, 22:00 Περιεχόµενα Διαβάστε πριν ξεκινήσετε Εκφώνηση άσκησης 1 Οδηγίες αποστολής άσκησης Πριν ξεκινήσετε (ΔΙΑΒΑΣΤΕ
ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14
ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 1. Δημιουργία Πίνακα 1.1 Εισαγωγή μετρήσεων και υπολογισμός πράξεων Έστω ότι χρειάζεται να υπολογιστεί
4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος
4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος Μεταβλητές Συστήματος Η Processing χρησιμοποιεί κάποιες μεταβλητές συστήματος, όπως τις ονομάζουμε, για να μπορούμε να παίρνουμε πληροφορίες από το
Σχετική κίνηση αντικειμένων
Σχετική κίνηση αντικειμένων Πως θα μπορούσε να κινηθεί ένας χαρακτήρας προς την έξοδο ενός λαβύρινθου; Πως θα μπορούσε το αυτοκινητάκι μας να κινείται μέσα στην πίστα; Πως θα μπορούσαμε να αναπαραστήσουμε
όπου Η μήτρα ή πίνακας του συστήματος
Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων
ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ : Μαθηµατικά Θετικής και Τεχνολογικής κατεύθυνσης : Β Ενιαίου Λυκείου
ΜΑΘΗΜΑ ΤΑΞΗ ΕΝΟΤΗΤΑ ΕΙΣΗΓΗΤΗΣ : Μαθηµατικά Θετικής και Τεχνολογικής κατεύθυνσης : Β Ενιαίου Λυκείου : Υπερβολή : Λυµπερόπουλος Ιωάννης. Σκοπός : Οι µαθητές να γνωρίζουν : α) Τον ορισµό της υπερβολής. β)
Εφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών»
«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών» Καθηγητής ΜΠΟΥΖΑΛΗΣ ΜΙΧΑΛΗΣ e mail mbouzalis@otenet.gr Κλάδος Π Ε, Μαθηματικός Σχολείο ο Ενιαίο Λύκειο Καλαμαριάς Τάξη Θετική - Τεχνολογική κατεύθυνση
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό