Θέματα Εξετάσεων Σεπτεμβρίου 2010:
|
|
- Φοίβος Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες Στο επίπεδο, ορίζεται χωρίο που περικλείεται από τον άξονα των δηλ. την οριζόντια ευθεία που περνά από το σημείο, και την καμπύλη Bezier που ορίζουν τα εξής σημεία ελέγχου με τη σειρά που δίνονται:,,,,,,,,, Υπολογίστε το εμβαδόν του χωρίου αυτού με ολοκλήρωση κατά Guss-Legendre, με τρία μόνο σημεία. Κατά τον υπολογισμό, θα χρειαστεί μάλλον να λύσετε μη-γραμμικές εξισώσεις. Προς τούτο χρησιμοποιήστε Newon-Rphson. Επειδή οι επιλύσεις των μη-γραμμικών εξισώσεων είναι παρόμοιες, μπορείτε να λύσετε τη μία από αυτές και να μαντέψετε λογικά τις λύσεις των υπολοίπων, ώστε να βρείτε το ολοκλήρωμα. ΘΕΜΑ μονάδες Να βρείτε τη λύση του παρακάτω συστήματος μη-γραμμικών εξισώσεων με τη μέθοδο Guss-Seidel. Εκτελέστε επαναλήψεις και παρατηρείστε σχολιάστε τη δυνατότητα σύγκλισης. ΘΕΜΑ μονάδες α Να αναφέρετε τρόπους με τους οποίους μπορείτε να περιορίσετε το σφάλμα στρογγυλοποίησης και το σφάλμα αποκοπής κατά την εφαρμογή μεθόδου αριθμητικής παραγώγισης. β Να εκτιμήσετε το μέγιστο σχετικό σφάλμα υπολογισμού της ενέργειας H που ακτινοβολεί μια θερμή επιφάνεια Α, με βάση τη σχέση Sefn-Bolzmnn: H Aσ et εάν η μέτρηση της απόλυτης θερμοκρασίας της επιφάνειας δίνει: ± Κ, ενώ τα Α, σ, e είναι σταθερά. ΓΕΝΙΚΕΣ ΠΑΡΑΗΡΗΣΕΙΣ: Στις εξετάσεις του μαθήματος επιτρέπεται να έχετε μαζί σας το βιβλίο του μαθήματος, χωρίς πρόσθετες ασκήσεις κλπ γραμμένες σε αυτό. α βιβλία ελέγχονται. Άλλα βοηθήματα ή σημειώσεις δεν επιτρέπονται. Μην ξεχνάτε τον υπολογιστή τσέπης σας. Δεν επιτρέπεται η χρήση κινητού τηλεφώνου για την εκτέλεση πράξεων! Και, προφανώς, μην παραλείπετε την εκτέλεση των πράξεων όπου ζητείται, απαντώντας περιγραφικά!
2 ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Λύση Θέματος : Η παραμετρική εξίσωση της καμπύλης Bezier, με άρα Ν σημεία ελέγχου είναι η N i i X i και N i i Y i με και,,...,, Y X Y X τα δοσμένα σημεία ελέγχου. Είναι άρα Για να υπολογισθεί το εμβαδόν Ι του χωρίου «κάτω» από την καμπύλη αυτή και μέχρι της ευθείας, με ολοκλήρωση κατά Guss-Legendre, με τρία μόνο σημεία, μετασχηματίζεται πρώτα το ολοκλήρωμα ώστε τα όριά του να είναι τα [-,]. Είναι d d μ όπου μ και λ. Θα είναι.. Αλλά, αφού λ μ,......
3 ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Συνεπώς, μπορούμε να γράψουμε ότι.... Για τον υπολογισμό των τιμών του που αντιστοιχούν στις τρεις παραπάνω τιμές του, με βάση τα πολυώνυμα Bezier που βρέθηκαν στην αρχή, θα χρειαστεί να λυθούν οι εξής τρείς μη-γραμμικές εξισώσεις:... Προς τούτο χρησιμοποιείται η μέθοδος Newon-Rphson. Έτσι, λ.χ. για την πρώτη από τις τρεις, είναι με το δείκτη των επαναλήψεων. Οι λύσεις, κατά σειρά, των τριών εξισώσεων είναι.,.,.. Δεδομένου ότι ο ζητούμενο ολοκλήρωμα είναι
4 ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Φέρνουμε το σύστημα στη μορφή f, g, Λύση Θέματος : επιλέγοντας έναν από τους πολλούς δυνατούς τρόπους αναδιάταξης των εξισώσεων του, όπως λ.χ. ο παρακάτω είναι ο δείκτης των επαναλήψεων Ξεκινάμε τις επαναλήψεις λ.χ. με,.,.. Παίρνουμε διαδοχικά: τείνοντας προς τη λύση και. έλος, βρίσκουμε αναλυτικά το άθροισμα των απολύτων τιμών των μερικών παραγώγων της συνάρτησης f και της g και παρατηρούμε ότι δεν είναι μικρότερο της μονάδας για κάθε τιμή των και. Επομένως, δεν μπορούμε εκ των προτέρων να διαπιστώσουμε εάν το σχήμα θα συγκλίνει. Λύση Θέματος : α Για το σφάλμα στρογγυλοποίησης, βλ. θεωρία κεφαλαίου και για το σφάλμα αποκοπής κατά την εφαρμογή μεθόδου αριθμητικής παραγώγισης βλ. το σχετικό κεφάλαιο περί πεπερασμένων διαφορών. β Αφού τα Α, σ, e είναι σταθερά, μόνη πηγή σφάλματος είναι το. Είναι, ουσιαστικά, ΗΗ, δηλαδή συνάρτηση μιας μεταβλητής. Επομένως βλ. βιβλίο, το σχετικό σφάλμα ε Η της ποσότητας Η είναι Η ε Η ε Η
5 όπου Η ΑΡΙΘΜΗΙΚΗ ΑΝΑΛΥΣΗ ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ dh dt AσeT Άρα ε ε Η. Αφού το μέγιστο σχετικό σφάλμα της θερμοκρασίας είναι ε. ε H..
Θέματα Εξετάσεων Σεπτεμβρίου 2011:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες.5 Η ωριαία μεταβολή της ηλιακής ακτινοβολίας q που προσπίπτει στην επιφάνεια ηλιακού συλλέκτη
Διαβάστε περισσότεραΘέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΚεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με
Διαβάστε περισσότεραΠαντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f
Διαβάστε περισσότεραΘέματα Εξετάσεων Φεβρουαρίου 2013:
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέματα Εξετάσεων Φεβρουαρίου : ΘΕΜΑ (μονάδες.) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (K,) και (,). Η συντεταγμένη Κ του ενδιάμεσου
Διαβάστε περισσότεραA Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C
Διαβάστε περισσότερα5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.
69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον
Διαβάστε περισσότεραΠαραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος
Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Διαβάστε περισσότεραΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Διαβάστε περισσότεραx + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos
http://lar.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Άσκηση. (5 μονάδες) i) ( μονάδες) Υπολογίστε την παράγωγο για κάθε μία από τις επόμενες συναρτήσεις: a)
Διαβάστε περισσότεραΓιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
Διαβάστε περισσότεραΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός
Διαβάστε περισσότερα. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.
O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΑριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραh ln 1 γ) Αν η συνάρτηση f είναι συνεχής στο Δ, τότε είναι και παραγωγίσιμη στο Δ.
ΘΕΜΑ A Α1. α) Να δώσετε τον ορισμό πότε μια συνάρτηση f είναι συνεχής στο (α, β) και πότε στο [α, β]. Σχεδιάστε μια συνάρτηση που είναι συνεχής στο =1 αλλά όχι παραγωγίσιμη β) Να διατυπώσετε τον ορισμό
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να
Διαβάστε περισσότερα3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος
9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
Διαβάστε περισσότεραΠίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
Διαβάστε περισσότερα7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον
Διαβάστε περισσότερα2 η ΕΡΓΑΣΙΑ Παράδοση
η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not deined. Σκοποί Μαθήματος (Επικεφαλίδα
Διαβάστε περισσότεραΜιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Διαβάστε περισσότεραΑριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =
Διαβάστε περισσότεραΑριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009
ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Γ Λυκείου
Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 3 598 Περιεχόμενα Συνδυαστικά Θέματα... Προβλήματα... 6 Επιμέλεια
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της
Διαβάστε περισσότερα1 Arq thc Majhmatik c Epagwg c
Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 4 Ιουνίου 009 Θέμα (0 μονάδες) α) (7 μον) Για τις διάφορες τιμές του k R, να λυθεί το σύστημα y+ kz =
Διαβάστε περισσότερα1.1. Διαφορική Εξίσωση και λύση αυτής
Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα
Διαβάστε περισσότεραΠαρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
Διαβάστε περισσότεραΠ Κ Τ Μ Ε Μ Λύσεις των ασκήσεων
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
Διαβάστε περισσότερα1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση
ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις
Διαβάστε περισσότεραΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x
ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι
Διαβάστε περισσότερακαι δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x
ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ. 15 Α. α) Ψ β) Σχήμα 1 και μελέτη της f, όπου η f είναι συνεχής στο και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α. Ορισμός σελ. 7 Α. α) Λ β) Σ γ)
Διαβάστε περισσότεραγια κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω
Διαβάστε περισσότεραΙόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
Διαβάστε περισσότεραΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΣΕΙΡΕΣ:. Να γράψετε τους πρώτους πέντε όρους της κάθε ακολουθίας: (β) (γ), Απαντήσεις: {/, /, 7/8, 5/6, /} (β) {, /5, /,5/, /7} (γ) {, /,, /,
Διαβάστε περισσότεραΗ Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί
Διαβάστε περισσότεραAΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:
AΡΧΗ ΗΣ ΣΕΛΙΔΑΣ 9 ο ΔΙΑΓΩΝΙΣΜΑ ΕΠΑΝΑΛΗΨΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 5o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : Tέσσερις (4) ΘΕΜΑ A Α. Έστω f μια
Διαβάστε περισσότερα3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ
. ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΘΕΩΡΙΑ. Μέθοδοι επίλυσης : Οι βασικές µέθοδοι αλγεβρικής επίλυσης ενός γραµµικού συστήµατος δύο εξισώσεων µε δύο αγνώστους είναι δύο η µέθοδος της αντικατάστασης
Διαβάστε περισσότερα~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 04 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Η συνάρτηση f ( ) γράφεται f x y + x + y x y + x + y xy ( ) ( ) ( ) ( ) Το πραγματικό και
Διαβάστε περισσότεραΓ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΚεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότεραΚεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ. lim. (β) n +
ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ ) Να υπολογιστούν τα όρια των κάτωθι ακολουθιών με : (α) + 5 + 7 + + (β) + 5 + + (γ) + + + (δ) ( 5 ) + + 4 + ( ) + 5 ) Να βρεθούν
Διαβάστε περισσότερα2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Διαβάστε περισσότεραη απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,
Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Διαβάστε περισσότερα4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε
Διαβάστε περισσότεραΕργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Διαβάστε περισσότεραΣχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων
Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότεραInterpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1
Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9
Διαβάστε περισσότεραΛύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους
ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική
Διαβάστε περισσότεραΓια να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΟνοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση
ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε
Διαβάστε περισσότερα2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )
Περιεχόμενα Γράφημα της συνάρτησης f( ), αν p < 0 F( ) = f( ), αν 0 p και F( + p) = F( ), R (δηλ της περιττής περιοδικής επέκτασης της f = f( ), 0 p στο R ) Περιεχόμενα 5 ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Διατυπώστε τον 1 ο κανόνα ολοκλήρωσης Smpson b f ( xdx ) ( 1 3 f f f ) a, αντικαθιστώντας τη συνάρτηση f
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
Διαβάστε περισσότερα