1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας
|
|
- ÚΑἰσχύλος Βιλαέτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος παραγωγής του (σε ευρώ) είναι MC =2+q, όπου P είναι η οριακή προθυμία για πληρωμή για το νερό και q είναι η ζητούμενη και/ή προσφερόμενη ποσότητα. Να υπολογισθούν α) η προσφερόμενη ποσότητα νερού σε μία στατική αποτελεσματική κατανομή και β) το μέγεθος του καθαρού οφέλους από την κατανάλωση του νερού (σε ευρώ). α) Υπολογισμός της προσφερόμενης ποσότητας νερού. Δεδομένα: q = 12-P (1) MC =2+q (2) Επειδή από τα δεδομένα το P είναι η οριακή προθυμία για πληρωμή για νερό, δηλαδή σε αποτελεσματική αγορά ταυτίζεται με τη τιμή του νερού, πρέπει τη συνάρτηση ζήτησης που δίδεται να τη λύσουμε ως προς P για να εξάγουμε την αντίστροφη συνάρτηση ζήτησης, δηλαδή: q = 12-P=> P=12 - q (3) Είναι γνωστό επίσης ότι, η μεγιστοποίηση του καθαρού οφέλους από τη χρήση του νερού (συνθήκη για την στατική αποτελεσματική κατανομή του) επιτυγχάνεται όταν το οριακό όφελος της χρήσης του είναι ίσο με το οριακό κόστος του, δηλαδή: P = ΜC=> λόγω των (2), (3) 12- q=2+q=>12-2=2 q=> q=5 Άρα, η προσφερόμενη ποσότητα σε μία στατική αποτελεσματική κατανομή αντιστοιχεί σε q*=5 μονάδες νερού. β) Υπολογισμός του καθαρού οφέλους από τη κατανάλωση νερού. Πρώτον, σχεδιάζουμε το διάγραμμα καμπυλών ζήτησης και οριακού κόστους: Σχεδιασμός της καμπύλης (ευθείας) ζήτησης: Θέτοντας όπου q=0 στην αντίστροφη συνάρτηση ζήτησης P=12 q, βρίσκουμε ότι η καμπύλη ζήτησης τέμνει τον άξονα των τιμών (κάθετος άξονας) στο σημείο P 0 = 12. Επίσης, θέτοντας όπου P = 0 στην αντίστροφη συνάρτηση ζήτησης P=12 q, βρίσκουμε ότι η καμπύλη ζήτησης τέμνει τον άξονα των ποσοτήτων (οριζόντιος άξονας) στο σημείο q 0 =12. Σχεδιασμός της καμπύλης (ευθείας) προσφοράς: Θέτοντας q=0 στη συνάρτηση οριακού κόστους MC = 2+q, βρίσκουμε ότι MC = 2 και άρα η καμπύλη προσφοράς (ταυτίζεται με αυτή του οριακού κόστους) περνάει από το σημείο 2 του άξονα των τιμών (κάθετος άξονας) επειδή ισχύει P = ΜC. Επίσης, θέτοντας όπου q=q* = 5 στην αντίστροφη συνάρτηση ζήτησης P = 12-q, βρίσκουμε ότι P*=7. Άρα, οι καμπύλες οριακού κόστους και ζήτησης τέμνονται στο σημείο (Ρ*, q*) =(7,5). [1]
2 Τώρα μπορούμε να σχεδιάσουμε το διάγραμμα καμπυλών ζήτησης και προσφοράς, όπως φαίνεται στο διπλανό γράφημα: Το συνολικό όφελος δίδεται από το εμβαδόν του πολυγωνικού σχήματος ΟP 0 Aq*που βρίσκεται κάτω από τη γραμμή της αντίστροφης ζήτησης D. Όπως παρατηρείται το πολύγωνο σχήμα αυτό αποτελείται από το ορθογώνιο παραλληλόγραμμο ΟP*Aq* και από το ορθογώνιο τρίγωνο p*p 0 A. Επομένως το συνολικό εμβαδόν το προαναφερομένου πολυγώνου αποτελείται από το άθροισμα των εμβαδών των προαναφερόμενων παραλληλόγραμμου και τριγώνου, θα είναι δηλαδή: Β(Όφελος)=(ΟP*ΧP*A)+(P*P 0 ΧP*Α)/2=(7Χ5)+(5Χ5)/2=35+12,5=47,5 ευρώ. Το συνολικό κόστος δίδεται από το εμβαδόν του πολυγωνικού σχήματος ΟSAq*που βρίσκεται κάτω από τη γραμμή προσφοράς S. Όπως παρατηρείται το πολύγωνο σχήμα αυτό προκύπτει αν αφαιρέσουμε από το ορθογώνιο παραλληλόγραμμο ΟP*Aq* το ορθογώνιο τρίγωνο SP*A. Επομένως το συνολικό εμβαδόν το προαναφερομένου πολυγώνου αποτελείται από τη διαφορά των εμβαδών των προαναφερόμενων παραλληλόγραμμου και τριγώνου, θα είναι δηλαδή: C(Κόστος)= (ΟP*ΧP*A)- (SP*ΧP*Α)/2=(7X5)-(5 x 5)/2 =35-12,5=22,5 ευρώ. Επομένως, Καθαρό όφελος(nb) = όφελος(b) κόστος(c) = 47,5-22,5=25 ευρώ. 2. Κατανομή πόρων σε συνθήκες δυναμικής αποτελεσματικότητας Υποθέτουμε ότι το συνολικό κοινωνικό όφελος από την κατανομή ενός φυσικού πόρου (π.χ. η ξυλεία από ένα δάσος) δίδεται από τη σχέση: Επίσης το συνολικό κόστος της κατανομής αυτής δίδεται από τη σχέση: Έστω δε ότι το απόθεμα Q της ξυλείας είναι εξαντλήσιμο και ισούται με 100. Να υπολογισθεί η άριστη κατανομή της ποσότητας της ξυλείας στις χρονικές στιγμές 0 και 1, αν ληφθεί υπόψη ότι ισχύει επιτόκιο 10%. Είναι γνωστό ότι, η άριστη κατανομή της ξυλείας στις χρονικές στιγμές 0 και 1 επιτυγχάνεται όταν μεγιστοποιείται η παρούσα αξία του συνολικού καθαρού κοινωνικού [2]
3 οφέλους, με τον περιορισμό ότι η συνολική διαθέσιμη ποσότητα της ξυλείας είναι πεπερασμένη. Το συνολικό καθαρό κοινωνικό όφελος που προκύπτει από τις (1) και (2) θα είναι: Επομένως, πρέπει να μεγιστοποιήσουμε την παρούσα αξία του συνολικού καθαρού κοινωνικού οφέλους που προκύπτει από την κατανομή του πόρου, έχοντας το περιορισμό της πεπερασμένης προσφερόμενης ποσότητας του, δηλαδή: Γνωρίζουμε ότι η προαναφερόμενη συνάρτηση μεγιστοποιείται όταν οι συνθήκες πρώτης τάξης της συνάρτησης Lagrange που εξάγεται από αυτή μηδενίζονται. Η εξαγόμενη συνάρτηση Lagrange είναι: Άρα μηδενίζουμε τις συνθήκες πρώτης τάξης ως εξής: Στην συνέχεια διαιρούμε κατά μέλη τις (7) και (8) και λύνουμε ως προς q 0, δηλαδή, Ακολούθως αντικαθιστούμε στην (9) το ίσον του q 0 και λύνουμε ως προς q 1, δηλαδή: Στην συνέχεια αντικαθιστούμε επίσης στην (9) το ίσον του q 1 και λύνουμε ως προς q 0, δηλαδή: Κατά συνέπεια η άριστη κατανομή του φυσικού πόρου είναι τη χρονική στιγμή 0:49,81 και τη χρονική στιγμή 1:50,19, επειδή με αυτές τις τιμές μεγιστοποιείται το καθαρό όφελος του όπως αποδείξαμε παραπάνω, έχοντας το περιορισμό του πεπερασμένου αποθέματος του. [3]
4 3. Υπολογισμός της αγοραίας καμπύλης ζήτησης για ένα δημόσιο αγαθό Έστω ότι μία κοινότητα αποτελείται από κατοίκους. Το 50% των κατοίκων έχει ταυτόσημη συνάρτηση ζήτησης του νερού του υδραγωγείου της κοινότητας που δίδεται από την εξίσωση: Pj = 10 q, j=0%,,50%(1) όπου q είναι η ποσότητα νερού από το κοινοτικό υδραγωγείο, και Pj είναι το χρηματικό ποσό ανά λίτρο νερού που ο κάθε κάτοικος από το 50% των κατοίκων της κοινότητας είναι πρόθυμος να καταβάλλει. Το 30% των κατοίκων έχει ταυτόσημη συνάρτηση ζήτησης του νερού του υδραγωγείου της κοινότητας που δίδεται από την εξίσωση: Pk= 25 2q, k=0%,30% (2) όπου P k είναι το χρηματικό ποσό ανά λίτρο νερού που ο κάθε κάτοικος από το 30% των κατοίκων της κοινότητας είναι πρόθυμος να καταβάλλει. Τέλος το 20% των κατοίκων έχει ταυτόσημη συνάρτηση ζήτησης του νερού του υδραγωγείου της κοινότητας που δίδεται από την εξίσωση: Pi = 30 2,8q, i=0%,,20% (3) όπου Pi είναι το χρηματικό ποσό ανά λίτρο νερού που ο κάθε κάτοικος από το 20% των κατοίκων της κοινότητας είναι πρόθυμος να καταβάλλει. Να υπολογιστεί η αγοραία καμπύλη ζήτησης νερού του συνόλου των κατοίκων της κοινότητας. Η αγοραία καμπύλη συνολικής ζήτησης του νερού του υδραγωγείου προκύπτει από την κατακόρυφη άθροιση των ατομικών καμπυλών ζήτησης του συνόλου των κατοίκων της κοινότητας. Επειδή όμως δεν έχουν όλοι οι κάτοικοι την ίδια συνάρτηση ζήτησης, αλλά το 50% αυτών δηλαδή οι 643 εκφράζονται από την συνάρτηση ζήτησης (1), το 30% αυτών δηλαδή οι 386 εκφράζονται από την συνάρτηση ζήτησης (2), και το 20% αυτών δηλαδή οι 257 εκφράζονται από την συνάρτηση ζήτησης (3), η συνολική αγοραία καμπύλη ζήτησης δίνεται από την εξίσωση: [4]
5 4. Αξιολόγηση περιβαλλοντικών προγραμμάτων με το κριτήριο του Λόγου Οφέλους/Κόστους Παράδειγμα 1 Έστω ότι σύμφωνα με την οικονομοτεχνική μελέτη ενός περιβαλλοντικού προγράμματος, τα αναμενόμενα οφέλη και κόστη δίδονται από τον παρακάτω πίνακα: ΕΤΗ ΟΦΕΛΗ (Β) ΚΟΣΤΗ (C) Ζητείται να αξιολογηθεί αν το πρόγραμμα είναι αποτελεσματικό με την εν λόγω μέθοδο, λαμβάνοντας υπόψη ότι ισχύει επιτόκιο προεξόφλησης 16%. Είναι γνωστό ότι, ένα πρόγραμμα είναι αποτελεσματικό σύμφωνα με αυτή την μέθοδο αξιολόγησης, όταν η παρούσα αξία του συνολικού καθαρού οφέλους του είναι θετική, δηλαδή: Επομένως, με εφαρμογή της παραπάνω σχέσης στα δεδομένα του προβλήματος θα έχουμε: Επομένως, άρα το πρόγραμμα είναι αποτελεσματικό. Παράδειγμα 2 Έστω ότι σύμφωνα με τις οικονομοτεχνικές μελέτες δυο περιβαλλοντικών προγραμμάτων, τα αναμενόμενα οφέλη και κόστη δίδονται από τον παρακάτω πίνακα: ΕΤΗ ΠΡΟΓΡΑΜΜΑ Χ ΠΡΟΓΡΑΜΜΑ Ψ ΟΦΕΛΗ (Β) ΚΟΣΤΗ (C) ΟΦΕΛΗ (Β) ΚΟΣΤΗ (C) Με δεδομένο ότι το δημόσιο μπορεί να διαθέσει μόνο για τη χρηματοδότηση τους, να αξιολογηθεί ποιο από τα προαναφερόμενα προγράμματα θα επιλεχθεί κατά προτεραιότητα, λαμβάνοντας υπόψη ότι ισχύει επιτόκιο προεξόφλησης 16%. Σύμφωνα με την εν λόγω μέθοδο, θα επιλεχθεί εκείνο το πρόγραμμα που έχει την μεγαλύτερη, εφόσον και στα δύο προγράμματα το κόστος κατασκευής τους καλύπτεται από το διαθέσιμο ποσό χρηματοδότησης του δημοσίου. Επομένως θα [5]
6 υπολογισθεί η καθενός χωριστά και στην συνέχεια θα επιλεγεί αυτό που έχει την μεγαλύτερη από το άλλο. Θα έχουμε: Για το πρόγραμμα Χ: Για το πρόγραμμα Ψ: Επομένως επιλέγεται να χρηματοδοτηθεί το πρόγραμμα Ψ. 5. Μαθηματική ανάλυση του φόρου ανά μονάδα ρύπων Ας υποθέσουμε ότι έχουμε την περίπτωση μιας επιχείρησης παραγωγής αλατιού, που βρίσκεται δίπλα σε θάλασσα, από την οποία αλιεύουν ψάρια οι αλιείς της γύρω περιοχής. Έστω TC s = XS 2 - X το συνολικό κόστος της επιχείρησης παραγωγής αλατιού, το οποίο είναι συνάρτηση της παραγόμενης ποσότητας αλατιού S, της ποσότητας μόλυνσης X που προκαλεί η επιχείρηση στη θάλασσα από την επεξεργασία του αλατιού, και μιας σταθερής παραμέτρου θ. Επίσης, έστω TC f =fx 2 το τ συνολικό κόστος των αλιέων, το οποίο είναι συνάρτηση όχι μόνο της ποσότητας αλιευόμενων ψαριών f, αλλά και της ποσότητας μόλυνσης X που προκαλεί η επιχείρηση στη θάλασσα. Ζητείται να υπολογισθεί ο φόρος ανά μονάδα ρύπων που πρέπει να επιβληθεί στην επιχείρηση, ώστε η ποσότητα μόλυνσης από την παραγωγή της να είναι κοινωνικά αποδεκτή. Καταρχήν θεωρούμε ότι, η επιχείρηση λειτουργεί χωρίς να εφαρμόζει μέτρα περιορισμού της μόλυνσης που προκαλεί. Έτσι, υπολογίζουμε τα επίπεδα μόλυνσης που είναι άριστα για την κοινωνία από τη μεγιστοποίηση της συνάρτησης κερδών του συνόλου της κοινωνίας (δηλαδή, και των αλιέων και της επιχείρησης μαζί), χωρίς την επιβολή φόρου στην επιχείρηση από την επιβάρυνση που προκαλεί στην κοινωνία λόγω της μόλυνσης που παράγει. Το συγκεκριμένο πρόβλημα είναι ένα πρόβλημα μεγιστοποίησης χωρίς περιορισμό και δεν απαιτείται συνάρτηση Lagrange για την επίλυσή του. Η συνθήκη πρώτης τάξης ως προς Χ για άριστο είναι: όπου: Π T είναι τα συνολικά κέρδη κοινωνίας, δηλαδή της επιχείρησης αλατιού και των αλιέων, [6]
7 p s είναι η αγοραία τιμή του αλατιού, P f είναι η αγοραία τιμή των ψαριών. Η συνθήκη πρώτης τάξης ως προς Χ για άριστο είναι: Επειδή όμως η επιχείρηση λειτουργώντας με μοναδικό σκοπό την μεγιστοποίηση του κέρδους της δεν λαμβάνει υπόψη της το κέρδος της κοινωνίας, η πολιτεία της επιβάλλει ένα φόρο t, προκειμένου να την υποχρεώσει να περιορίσει τη μόλυνση που παράγει. Επομένως η συνάρτηση κόστους της που προαναφέρουμε θα τροποποιηθεί ως εξής: TC s = XS 2 - X+tX Τότε το πρόβλημα μεγιστοποίησης των κερδών της θα είναι: Η άριστη ποσότητα Χ t που μεγιστοποιεί την παραπάνω συνάρτηση προκύπτει όταν εξισώσουμε τη συνθήκη πρώτης τάξης της ως προς X με το μηδέν, δηλαδή: Επειδή δε η επιβολή του φόρου επιδιώκει να υποχρεώσει την επιχείρηση να παράγει ποσότητα μόλυνσης ίση με την κοινωνικά αποδεκτή, τότε εξισώνουμε αυτές τις ποσότητες ώστε να υπολογισθεί το ύψος του φόρου, δηλαδή: [7]
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ
ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.
ΕΡΓΑΣΙΕΣ 5 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής
ΕΡΓΑΣΙΕΣ 5 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Η επιβολή στην αγορά ενός αγαθού μιας τιμής που είναι μικρότερη της τιμής ισορροπίας θα προκαλέσει: α) Πλεόνασμα β) Έλλειμμα γ) Νέα ισορροπία
Κεφάλαιο 5. Δυναμική αποτελεσματικότητα και βιώσιμη ανάπτυξη
Κεφάλαιο 5. Δυναμική αποτελεσματικότητα και βιώσιμη ανάπτυξη 1 Εισαγωγή Δύο κριτήρια/αρχές/μέσα αποτελεσματικής διαχείρισης πόρων Στατική αποτελεσματικότητα: Ο παράγοντας χρόνος δεν είναι σημαντικός. Η
1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο
ΔΕΟ43. Απάντηση 2ης ΓΕ Επιμέλεια: Γιάννης Σαραντής. ΘΕΡΜΟΠΥΛΩΝ 17 Περιστέρι ,
ΔΕΟ43 Απάντηση 2ης ΓΕ 2016-2017 Επιμέλεια: Γιάννης Σαραντής 1 ΑΣΚΗΣΗ Νο 1 (20%) ΟΔΗΓΙΑ: Σε κάθε ερώτηση πολλαπλής επιλογής επιλέγετε μία απάντηση, και η επιλογή σας σημειώνεται με 1 στο αντίστοιχο πεδίο
Εισαγωγή στην Οικονομική Ανάλυση
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης
Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.
ΤΙΜΗ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: Η ΖΗΤΗΣΗ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. Χρησιμότητα ενός αγαθού, για τον καταναλωτή, είναι η ικανοποίηση
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 4 ο : Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( µε τις λύσεις ) Όταν µας δίνονται σε έναν πίνακα στοιχεία του κόστους π.χ. το Q και το
Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost
ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών
ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές
Περιφερειακή Ανάπτυξη και Περιβάλλον
Περιφερειακή Ανάπτυξη και Περιβάλλον Σημειώσεις Διδασκαλίας Διδάσκων: Ανδρέας Αναστασάκης Τ Ε Ι Κ ρ ή τ η ς Τ μ ή μ α Λ ο γ ι σ τ ι κ ή ς κ α ι Χ ρ η μ α τ ο ο ι κ ο ν ο μ ι κ ή ς Η ρ ά κ λ ε ι ο Ν ο έ
Κεφάλαιο 3. x 300 = = = Άσκηση 3.1
Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =
ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση. Επιμέλεια: Γιάννης Πουλόπουλος
ΔΕΟ 13 1 η Γραπτή Εργασία 016-17 Ενδεικτική απάντηση Άσκηση 11 (0%) Μια επιχείρηση παράγει δύο προϊόντα Χ και Υ με την ίδια παραγωγική διαδικασία. Δεδομένου ότι η επιχείρηση διαθέτει περιορισμένους πόρους
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Σύμφωνα με το νόμο της προσφοράς: α) Η προσφερόμενη ποσότητα ενός αγαθού αυξάνεται όταν μειώνεται η τιμή του στην αγορά β) Η προσφερόμενη
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( )
ΘΕΜΑ Α Α1. α. Σωστό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ (14.06.2017) ΟΜΑΔΑ ΠΡΩΤΗ β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό Α2. Σωστή επιλογή (γ) Α3. Σωστή επιλογή (δ) ΘΕΜΑ Β Β1. Σχολικό Βιβλίο (σελ. 16-17)
ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ
ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ Ας υποθέσουμε ότι έχουμε ένα αγαθό το οποίο δημιουργεί κατά την παραγωγή ή την κατανάλωσή του έναν ρύπο, και ας υποθέσουμε ότι για κάθε μία μονάδα
ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α. Με ολοκληρωμένη λύση ΘΕΜΑ 1 ο Επιχείρηση χρησιμοποιεί την εργασία ως μοναδικό μεταβλητό παραγωγικό συντελεστή. Τα στοιχεία κόστους της επιχείρησης δίνονται στον επόμενο πίνακα:
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες
3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή
ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του
ΑΣΚΗΣΕΙΣ. 1η οµάδα. 2. Έστω ο επόµενος πίνακας παραγωγικών δυνατοτήτων: Χ Υ Κόστος. Κόστος ευκαιρίας Ψ Α /3
ΑΣΚΗΣΕΙΣ 1η οµάδα 1. Έστω επιχείρηση που διαθέτει 5 εργάτες. Κάθε εργάτης µπορεί να παράγει 12 µονάδες από το αγαθό Υ. Επιπλέον γνωρίζουµε ότι η ΚΠ είναι γραµµική µε το συνδυασµό X = 45, Y = 24 να είναι
ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Βάλτε σε κύκλο το σωστό γράμμα: 1 ο ΔΙΑΓΩΝΙΣΜΑ Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Σ Λ Α. 2. Έστω δύο αγαθά
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες
Να χαρακτηρίσετε ως σωστές ή λανθασµένες τις επόµενες προτάσεις: Α3. Τα ελεύθερα αγαθά αποτελούν αντικείµενο µελέτης της Οικονοµικής Επιστήµης.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 8 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Όταν η ζήτηση αποδίδεται γραφικά
4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές
4. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Η ζήτηση εργασίας στο σύνολο της οικονομίας ορίζεται ως ο αριθμός εργαζομένων που οι επιχειρήσεις επιθυμούν να απασχολούν
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές
ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος
ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό
Α. Αυτάρκης Οικονομία
σελ. από 9 Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Οικονομικής Επιστήμης Μάθημα: 473 Διεθνής Οικονομική Εαρινό Εξάμηνο 05 Καθηγητής: Γιώργος Αλογοσκούφης Φροντιστής: Αλέκος Παπαδόπουλος 8/5/05 Διαγραμματική
ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ. Α.1. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος ΟΜΑΔΑ ΔΕΥΤΕΡΗ
ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ Α.1. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος Α.2. δ Α.3. β ΟΜΑΔΑ ΔΕΥΤΕΡΗ Β.1. Από το 5 ο Κεφάλαιο του σχολικού βιβλίου σελ. 97 98 σε συνδυασμό
Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της
Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της προσφοράς προσδιορίζει την τιμή και την ποσότητα ισορροπίας
2.10. Τιμή και ποσότητα ισορροπίας
.. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ. (Συνέχεια)
ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ (Συνέχεια) Πηγές αποτυχίας των αγορών Δημόσια αγαθά Είναι τα αγαθά των οποίων η χρήση δεν μπορεί να αποκλειστεί και ως εκ τούτου είναι ελευθέρα για
Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Ακαδημαϊκό έτος 2017-2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΛΥΣΕΙΣ ΔΕΥΤΕΡΟΥ ΠΑΚΕΤΟΥ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Εάν D(p) = 20 2p η
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
Η συνάρτηση y = αχ 2 + βχ + γ
Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε
Κύλινδρος κοιμώμενος εντός κώνου
Κύλινδρος κοιμώμενος εντός κώνου Γιώργος Μπαλόγλου gbaloglou@gmail.com 7 η Μαθηματική Εβδομάδα, 18- Μαρτίου 015, Θεσσαλονίκη Εισαγωγή Περίληψη: Υπολογίζεται ο μέγιστος όγκος οριζοντίου κυλίνδρου εγγεγραμμένου
ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Σεπτεμβρίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος, Γεωργία Καπλάνογλου ΕΝΔΕΙΚΤΙΚΕΣ
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Σύμφωνα με το νόμο της προσφοράς: α) Η προσφερόμενη ποσότητα ενός αγαθού αυξάνεται όταν μειώνεται η τιμή του στην αγορά β) Η προσφερόμενη
Δεύτερο πακέτο ασκήσεων και λύσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2015-2016 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Εξεταστική περίοδος Σεπτεμβρίου Η
Q VC AVC MC , ,5 7, , ,
ΛΥΣΕΙΣ ΑΟΘ 4 (για καλά διαβασμένους) ΟΜΑΔΑ Α Α1. γ Α2. γ Α3. Λ Α4. Σ Α5. Σ Α6. Λ Α7. Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 24 η παράγραφος 11 ΟΜΑΔΑ Γ Γ1. Ο πίνακας γίνεται: VC AVC MC 0 0 - - 10 100 10 10 180 9
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Τι πρέπει να κατανοήσει ο μαθητής Το κεφάλαιο εξετάζει την προσφορά των αγαθών, η οποία βασίζεται στη θεωρία παραγωγής και στη συμπεριφορά της επιχείρησης. Στο
g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα
ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων
Μεθοδολογία ασκήσεων Όταν έχουμε προβλήματα στο οποία ένα σώμα ισορροπεί, η μεθοδολογία που χρησιμοποιούμε έχει ως εξής: 1. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. Το πλήθος των δυνάμεων που σχεδιάζουμε
1 ου πακέτου. Βαθµός πακέτου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 01-013 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά
Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ
ΚΕΦΑΛΑΙΟ ΠΕΜ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ 1. Έννοια και λειτουργία της αγοράς Σε μια πρωτόγονη οικονομία, όπως του Ροβινσώνα Κρούσου, όπου δεν υπάρχει καταμερισμός της εργασίας ο άνθρωπος παράγει μόνος του
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 4 ο : Η Προσφορά των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Δίνονται τα διπλανά δεδομένα μιας επιχείρησης στη βραχυχρόνια περίοδο. i. Να κάνετε
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά
ΑΣΚΗΣΕΙΣ ΣΤΟ ΥΠΟ ΕΙΓΜΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡΟΣΦΟΡΑΣ
ΑΣΚΗΣΕΙΣ ΣΤΟ ΥΠΟ ΕΙΓΜΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Άσκηση 1: ίνεται ο πίνακας ζήτησης και προσφοράς ενός αγαθού Χ: Τιµή Ζητούµενη Προσφερόµενη ποσότητα ποσότητα 54 10 3 50 1 19 46 14 15 44 15 13 40 17 9 Ζητείται
ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ
ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ 1. Έστω ένας κλάδος όπου nn επιχειρήσεις έχουν την ίδια τεχνολογία. Η συνάρτηση κόστους της κάθε μιας επιχείρησης είναι CC() = 100 + 2. Η συνάρτηση ζήτησης του κλάδου είναι QQ DD =
Τρίτο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Τρίτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 18 Ιανουαρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x
Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Σε ένα κανονικό αγαθό, όταν αυξάνεται το εισόδηµα των καταναλωτών, τότε αυξάνεται και η συνολική δαπάνη των καταναλωτών 2.
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Σε ένα κανονικό αγαθό, όταν αυξάνεται το εισόδηµα των καταναλωτών, τότε αυξάνεται και η συνολική δαπάνη των καταναλωτών 2. Το µαγνητόφωνο ενός παιδιού είναι καταναλωτό αγαθό
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
Η Καμπύλη Προσφοράς της Επιχείρησης
Η Καμπύλη Προσφοράς της Επιχείρησης - Μπορούμε να διατυπώσουμε το πρόβλημα μεγιστοποίησης των κερδών και να βρούμε τις συναρτήσεις ζήτησης εισροών, τη συνάρτηση προσφοράς και τη συνάρτηση κερδών της επιχείρησης
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 15/06/2018 ΟΜΑΔΑ ΠΡΩΤΗ
Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 8 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 15/06/2018 ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ A A1. Να χαρακτηρίσετε τις προτάσεις
3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε
να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί
ΕΠΑΝΑΛΗΠΤΙΚΟ test ΣΤΟ ΚΕΦΑΛΑΙΟ 3 Σημειώστε το Σ αν η φράση είναι σωστή και το Λ αν η φράση είναι λανθασμένη: 1. Βραχυχρόνια περίοδος είναι το χρονικό διάστημα μέσα στο οποίο η επιχείρηση δεν μπορεί να
Ανάλυση συγκριτικής στατικής
Ανάλυση συγκριτικής στατικής Μεταβολή παραμέτρων και σύγκριση δυο στατικών σημείων. Εδώ θα μελετήσουμε τη μεταβολή των συναρτήσεων ζήτησης όταν παρατηρείται: x i p,i 1. μεταβολή όλων των τιμών και του
ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013
12 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 ΚΕΦΑΛΑΙΟ 5ο (µε 2ο, 3ο και 4ο) ΗΜΕΡΗΣΙΑ 9/2000 ΗΜΕΡΗΣΙΑ 6/2000 ΕΣΜΕΣ 2000 ΕΣΜΕΣ 1998 28. ίνονται οι συναρτήσεις ζήτησης και προσφοράς
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο 1. Σε γραµµική ΚΠ της µορφής Y = a+ β X : α. Η µέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y = β β. Η µέγιστη ποσότητα για το αγαθό Χ παράγεται
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ
Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε
= γ + δ P απαιτεί γ > 0
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 10 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η τιµή ενός αγαθού Χ αυξάνεται.
ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ
ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ Άσκηση 3 Η ζήτηση τυριού τύπου δίνεται από τη συνάρτηση: Q 300 35P 14PB 24 20B όπου: Q η ζητούμενη ποσότητα τυριού τύπου P η τιμή τυριού τύπου P B η τιμή τυριού τύπου B η δαπάνη
= δ P η ελαστικότητα ως προς την τιµή
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού
Εφαρμογές οικονομικών συναρτήσεων
Εφαρμογές οικονομικών συναρτήσεων Μεγιστοποίηση κερδών Διάθεση προϊόντος με δύο συναρτήσεις ζήτησης Οριακά έσοδα σε σχέση με ελαστικότητα Εύρεση πεδίου ορισμού Επιβολή φόρου Σημείο μεγιστοποίησης κερδών
ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ
ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ Βάλτε σε κύκλο το σωστό γράμμα: Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Α. 2. Έστω
Επιχειρησιακά Μαθηματικά
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση
Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος
Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος - Τα προϊόντα που παράγουν οι επιχειρήσεις μπορούν να διαφοροποιούνται ως προς ένα πλήθος χαρακτηριστικών. Παράδειγμα: Τα αυτοκίνητα διαφοροποιούνται
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής
ΔΕΟ34 Ενδεικτική Απάντηση 1ης γραπτής εργασίας 2016-17 Επιμέλεια: Γιάννης Σαραντής 16/11/2016 2 Ερώτηση 1 α1) Αρχικό σημείο ισορροπίας της αγοράς είναι το σημείο Δ και η τιμή ισορροπίας του κλάδου είναι
Προτεινόμενα Θέματα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ ΠΡΩΤΗ
Α1 Προτεινόμενα Θέματα Αρχές Οικονομικής Θεωρίας 12-5-2018 ΟΜΑΔΑ ΠΡΩΤΗ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν με τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη.
Αρχές Οικονομικής Θεωρίας μάθημα επιλογής
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Γ ΓΕΛ Μάρτιος Αρχές Οικονομικής Θεωρίας μάθημα επιλογής Α. α. Λάθος β. Σωστό γ. Σωστό δ. Λάθος ε. Λάθος Α. δ Α. α ΟΜΑΔΑ Α ΟΜΑΔΑ Β Β. Σελ. 8-8 σχολικού βιβλίου: παρ. (β) Η Τεχνολογία
Κεφ. 2. Η ζήτηση των αγαθών
Κεφ.. Η ζήτηση των αγαθών. Εισαγωγή,. Η συμπεριφορά του καταναλωτή, 3. Νόμος ζήτησης καμπύλη ζήτησης. Τι σημαίνει για τον καταναλωτή χρησιμότητα ενός αγαθού;. Ποια συμπεριφορά ονομάζουμε ορθολογική και
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ 1. Στην περίπτωση των εξωτερικών επιβαρύνσεων στην παραγωγή, η επιβολή ενός φόρου ανά µονάδα προϊόντος ίσου µε το µέγεθος της οριακής εξωτερικής επιβάρυνσης µπορεί να οδηγήσει:
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Θεωρία: dq1 dq1 dq1 P1 E1. dq2 dq2 dq2 P2 E2 1 1 P E E. d π dp dc dq dq dq. dp dc dq dq
Θεωρία: Θέµα ο Η συνάρτηση κέρδους του µονοπωλητή ο οποίος πραγµατοποιεί διάκριση τιµών τρίτου βαθµού µεταξύ δύο αγορών και είναι η π µε τύπο π (, ) = R ( ) + R ( ) C( + ) Συνθήκες α' τάξης = R ' C ' =
ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική
Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους
Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους Ο θεμελιωτής της θεωρίας χωροθέτησης της βιομηχανίας ήταν ο Alfred Weber, την οποία αρχικά παρουσίασε ο μαθηματικός Laundhart (1885). Ο A. Weber (1868-1958)
2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.
Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που
Πλήρης ανταγωνισμός. Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ. Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ
Πλήρης ανταγωνισμός Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Θα Εξετάσουμε: Τέλειο ανταγωνισμό Υποθέσεις λειτουργίας τέλειου ανταγωνισμού Συνολικό, Μέσο και Οριακό έσοδο Βραχυχρόνια
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α 1 o Ο κλάδος των τηλεπικοινωνιών (τηλέφωνο, fax, e-mail, υπηρεσίες μηνυμάτων, κ.τ.λ) αποτελεί το πιο απλό και φυσικό παράδειγμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να