Пешачки мостови. Метални мостови 1
|
|
- Όλυμπος Θεοδοσίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Пешачки мостови Метални мостови 1
2 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је: вертикална сопствена фреквенција главне конструкције моста мања од 5,0 Hz. попречна или торзиона сопствена фреквенција главне конструкције моста мања од 2,5 Hz. Динамичком анализом мора се показати да је убрзање конструкције мање од прописаног: 0,7 m/s 2 за вертикалне вибрације, 0,2 m/s 2 за хоризонталне вибрације при нормалним условима, 0,4 m/s 2 за изузетне ситуације људске навале. Градски мостови - атрактивна конструкцијска решења. Метални мостови 2
3 Решења прилаза и статички системи пешачких мостова Прилази могу да буду у виду прилазних рампи или степеништа; 3
4 Метални мостови 4
5 Метални мостови 5
6 Метални мостови 6
7 Метални мостови 7
8 Метални мостови 8
9 Метални мостови 9
10 Покретни мостови Метални мостови 10
11 Подела покретних мостова Према начину померања (покретања) транслаторно покретљиви (вертикално или хоризонтално) ротационо покретљиви (око вертикалне осе или хоризонталне осе) Метални мостови 11
12 Начини покретања Метални мостови 12
13 Метални мостови 13
14 Метални мостови 14
15 Метални мостови 15
16 Метални мостови 16
17 Метални мостови 17
18 Метални мостови 18
19 ЛЕЖИШТА Метални мостови 19
20 Основне функције лежишта 1. Преношење ослоначких реакција 2. Обезбеђење пројектованог померања и обртања на месту ослонца Метални мостови 20
21 Подела лежишта Према могућностима померања: непокретна, покретна у једном правцу и покретна у свим правцима. Покретна лежишта се могу поделити на: котрљајућа и клизна. У погледу обртања разликују се: линијско прекретна лежишта (обртање око једне линије) тачкасто прекретна лежишта (обртање око једне тачке - у свим правцима) Метални мостови 21
22 Врсте лежишта У зависности од материјала од кога су израђена разликују се: Класична челична лежишта, Лежишта на бази еластомера и Лежишта у лонцу (комбинација челика, неопрена и других материјала). Метални мостови 22
23 Техничка регулатива везана за лежишта SRPS EN : Лежишта за конструкције Део 1: Општа правила за прорачун SRPS EN : Лежишта за конструкције Део 2: Клизни елементи SRPS EN : Лежишта за конструкције Део 3: Еластомерна лежишта SRPS EN : Лежишта за конструкције Део 4: Котрљајућа лежишта SRPS EN : Лежишта за конструкције Део 5: Лежишта у лонцу SRPS EN : Лежишта за конструкције Део 6: Прекретна лежишта SRPS EN : Лежишта за конструкције Део 7: Сферична и цилиндрична лежишта од ПТФЕ SRPS EN : Лежишта за конструкције Део 8: Лежишта са вођицама и лежишта са спреченим померањима SRPS EN : Лежишта за конструкције Део 9: Заштита SRPS EN : Лежишта за конструкције Део 10: Контрола и одржавање SRPS EN : Лежишта за конструкције Део 11: Транспорт, складиштење и постављање SRPS EN : Пројектовање челичнх конструкција - Део 2: Челични мостови: Прилог А: Техничке спецификације за лежишта
24 Диспозицја лежишта Метални мостови 24
25 Непокретна челична лежишта линијски прекретна Метални мостови 25
26 Непокретна челична лежишта тачкасто прекретна Метални мостови 26
27 Челична лежишта покретна у једном правцу Метални мостови 27
28 Челична лежишта покретна у оба правца Метални мостови 28
29 Челична покретна лежишта (пендел лежишта) Линијски прекретна Тачкасто прекретна Метални мостови 29
30 Контактни напони (Херцови обрасци) σ = 0,418 P E 1 R 1 1 R 2 σ = 0,418 P E R 1 Метални мостови 30
31 Лежишта на бази еластомера Метални мостови 31
32 Основне карактеристике еластомера Велико клизање - мали модул клизања (G =1MPa) Тврдоћа 60 ± 5 ShA Чврстоћа на затезање 17,5 МРа Издужење при лому 450% Деформације при притиску < 15% Метални мостови 32
33 Правоугаона армирана неопренска лежишта a,b = mm s = 2 5 mm t = 5 18 mm h = mm N = kn Метални мостови 33
34 Правоугаона армирана неопренска лежишта Метални мостови 34
35 Правоугаона армирана неопренска лежишта Метални мостови 35
36 Кружна армирана неопренска лежишта Φ = mm s = 3 5 mm t = 8 18 mm h = mm N = kn Метални мостови 36
37 Неопренска лежишта Мостоградња Метални мостови 37
38 Лежишта у лонцу Метални мостови 38
39 Непокретна лежита у лонцу A - gornja čelična ploča B - čelični prsten C - elastomer (neopren) D - donja čelična ploča E - prsten za brtvljenje F - nastavci za pričvršćivanje G - zavrtnjevi za spajanje ležišta pri transportu H - stišljiva zaptivna traka J - montažni zavrtnjevi za nameštanje ležišta Метални мостови 39
40 Лежиште у лонцу покретно у једном правцу A - gornja čelična ploča B - nastavak za pričvršćivanje C - teflon 3-5 mm D - srednja ploča za koju se lepi teflon E - neopren J - montažni zavrtnjevi za nameštanje ležišta F - donja čelična ploča lonca G - čelični prsten H - stišljiva zaptivna traka I - čelični graničnik za prijem horizontalnih sila Метални мостови 40
41 Метални мостови 41
42 ДИЛАТАЦИОНИ УРЕЂАЈИ Метални мостови 42
43 Прелаз са моста код железничких мостова са отвореним коловозом Метални мостови 43
44 Решења већих дилатација код железничких мостова Метални мостови 44
45 Челичне прелазнице код друмских мостова Метални мостови 45
46 Челичне прелазнице (чешљеви) Метални мостови 46
47 Трансфлекс прелазнице на бази неопрена Метални мостови 47
48 Метални мостови 48
49 Метални мостови 49
50 Метални мостови 50
51 Железничке дилатације у случају коловоза са туцаничким застором Метални мостови 51
52 Лежишта за велике дилатације Метални мостови 52
53 Лежишта за велике дилатације Метални мостови 53
54 Водонепропусне прелазнице Метални мостови 54
55 Лежишта са механичким пригушивачима Метални мостови 55
56 Лежишта са хидрауличним пригушивчима Метални мостови 56
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Διαβάστε περισσότεραMостови са косим затегама (кабловима) Метални мостови 1
Mостови са косим затегама (кабловима) Метални мостови 1 Основне карактеристике Почетак развоја шездесетих година 20. века. Примењују се за веће распоне L = 200 1000 m (у новије време и преко 1000 m); Основни
Διαβάστε περισσότεραПоложај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Διαβάστε περισσότεραРотационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
Διαβάστε περισσότεραСаобраћајна оптерећења на мостовима - према Еврокоду
Саобраћајна оптерећења на мостовима - према Еврокоду Област примене - прописи Саобраћајна оптерећења на мостовима су дефинисана у стандарду SRPS EN 1991-2 и његовом Националним прилогу (SRPS EN 1991-2/NA).
Διαβάστε περισσότεραПисмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
Διαβάστε περισσότεραпредмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Διαβάστε περισσότεραb) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Διαβάστε περισσότερα1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Διαβάστε περισσότεραЛУШПИ МЕМБРАНСКА ТЕОРИЈА
Вежби ЛУШПИ МЕМБРАНСКА ТЕОРИЈА РОТАЦИОНИ ЛУШПИ ТОВАРЕНИ СО РОТАЦИОНО СИМЕТРИЧЕН ТОВАР ОСНОВНИ ВИДОВИ РОТАЦИОНИ ЛУШПИ ЗАТВОРЕНИ ЛУШПИ ОТВОРЕНИ ЛУШПИ КОМБИНИРАНИ - СФЕРНИ - КОНУСНИ -ЦИЛИНДРИЧНИ - СФЕРНИ
Διαβάστε περισσότεραОДРЕЂИВАЊЕ КРИТИЧНОГ БРОЈА ОБРТАЈА РОТОРА ПАРНИХ ТУРБИНА ВЕЛИКЕ СНАГЕ Мастер (М. Sc.) рад
ОДРЕЂИВАЊЕ КРИТИЧНОГ БРОЈА ОБРТАЈА РОТОРА ПАРНИХ ТУРБИНА ВЕЛИКЕ СНАГЕ Мастер (М. Sc.) рад Студент : Милош Д. Радовановић Ментор: проф. Dr-Ing Милан В. Петровић Београд 2016. Увод Садржај мастер рада: Приказ
Διαβάστε περισσότεραОсцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
Διαβάστε περισσότεραВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Διαβάστε περισσότεραТеорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Διαβάστε περισσότεραЕластичне и пластичне деформације рекристализација
Машински материјали Предавање број 4 Понашање метала при деловању спољних силаеластична деформација, пластична деформација, рекристализација, обрада деформисањем у хладном и топлом стању. Својства метала
Διαβάστε περισσότεραПредизвици во моделирање
Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање
Διαβάστε περισσότεραОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Διαβάστε περισσότερα6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Διαβάστε περισσότεραПредмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότεραВрсте замора Нискоциклични замор Високоциклични замор
Замор Врсте замора Нискоциклични замор велике пластичне деформације (превијање) мали број циклуса (нпр. услед сеизмичких утицаја); Високоциклични замор еластично понашање (напрезања испод границе развлачења)
Διαβάστε περισσότεραДинамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Διαβάστε περισσότεραВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака
Διαβάστε περισσότεραа) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации
Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени
Διαβάστε περισσότεραМашински факултет Универзитета у Београду/ Машински елементи 2/ Предавање 6
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 6 КОНУСНИ ЗУПЧАСТИ ПАРОВИ Основне карактеристике и подела Конусни зупчасти парови користе се за пренос и трансформацију снаге од
Διαβάστε περισσότεραМАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Διαβάστε περισσότερα7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Διαβάστε περισσότερα2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Διαβάστε περισσότεραналазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Διαβάστε περισσότεραАКСИЈАЛНО НАПРЕГАЊЕ Катедра за техничка механика и јакост на материјалите
УНИВЕРЗИТЕТ Св. КИРИЛ иметодиј ГРАДЕЖЕН ФАКУЛТЕТ СКОПЈЕ Катедра за техничка механика и јакост на материјалите http://ktmjm.gf.ukim.edu.mk АКСИЈАЛНО НАПРЕГАЊЕ 17.02.2015 АКСИЈАЛНО НАПРЕГАЊЕ КОГА??? АКСИЈАЛНО
Διαβάστε περισσότεραКИНЕМАТСКЕ ВЕЛИЧИНЕ ЦИЛИНДРИЧНИХ ЗУПЧАСТИХ ПАРОВА
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 3 КИНЕМАТСКЕ ВЕЛИЧИНЕ ЦИЛИНДРИЧНИХ ЗУПЧАСТИХ ПАРОВА Кинематским величинама дефинише се зупчасти пар. Оне се одређују на основу геометријских
Διαβάστε περισσότεραПисмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
Διαβάστε περισσότεραДИМЕНЗИОНИСАЊЕ ЧЕЛИЧНОГ СФЕРНОГ РЕЗЕРВОАРА ВИСИНЕ H=44m ПРЕМА ЕВРОКОДУ
ДИМЕНЗИОНИСАЊЕ ЧЕЛИЧНОГ СФЕРНОГ РЕЗЕРВОАРА ВИСИНЕ H=44m ПРЕМА ЕВРОКОДУ Мирослав Т. Бешевић 1 Смиља Живковић 2 Мартина Војнић Пурчар 3 УДК: 624.953 : 693.814 DOI: 10.14415/zbornikGFS30.05 Резиме: У овом
Διαβάστε περισσότεραРамовски системи бетонских мостова
Рамовски системи бетонских мостова 1 БЕТОНСКИ МОСТОВИ РАМОВСКИ (ОКВИРНИ СИСТЕМИ) Оквир - рам Носач оквира је коловозна конструкција; Стубови оквира су ослоначки делови; Монолитна веза носача и стубова
Διαβάστε περισσότεραАНАЛИЗА ЗАМОРА МАТЕРИЈАЛА КОД ЧЕЛИЧНИХ ДРУМСКИХ МОСТОВА ПРЕМА ЕВРОКОДУ
АНАЛИЗА ЗАМОРА МАТЕРИЈАЛА КОД ЧЕЛИЧНИХ ДРУМСКИХ МОСТОВА ПРЕМА ЕВРОКОДУ Петар Кнежевић, Миливоје Милановић УДК: 9.4:6.7.6 OI: 0.44/zbornikGFS7.0 Резиме: У овом раду анализирана је носивост на замор карактеристичних
Διαβάστε περισσότεραМЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем
Διαβάστε περισσότεραУниверзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
Διαβάστε περισσότεραОТПОРНОСТ МАТЕРИЈАЛА
Висока техничка школа струковних студија Београд ПРЕДМЕТ: ОТПОРНОСТ МАТЕРИЈАЛА Др Андреја Стефановић ШКОЛСКА ГОДИНА: 2017/2018 СЕМЕСТАР: II 1.1 Циљ, литература и реализација програма 1.2 Увод 1.2.1 Историјски
Διαβάστε περισσότεραТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Διαβάστε περισσότεραг) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Διαβάστε περισσότεραЛом услед замора материјала
Лом услед замора материјала Замор материјала представља процес постепеног разарања материјала услед настанка и раста прслине до лома, под дејством дуготрајног дејства периодично променљивих оптерећења
Διαβάστε περισσότεραПримена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Διαβάστε περισσότερασ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба
4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по
Διαβάστε περισσότεραМашински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4
1. ОСОВИНЕ И ВРАТИЛА 1..1. Увод Вратила и осовине, као основни елементи обртног кретања, морају увек бити преко клизних и котрљајних лежаја ослоњени на носећу конструкцију. Два вратила међусобно се спајају
Διαβάστε περισσότεραСлика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
Διαβάστε περισσότεραКРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 3 КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Критична стања машинских делова У критичном стањеу машински делови не могу да извршавају своју
Διαβάστε περισσότεραМАШИНСКИ ЕЛЕМЕНТИ II
Машински факултет Универзитета у Београду/ Машински елементи / Предавање МАШИНСКИ ЕЛЕМЕНТИ II Механички преносници снаге Механички преносници снаге (ПС) представљају машинску групу која у машинском систему
Διαβάστε περισσότεραПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору:
СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ ПЛАНЕТАРНИ РЕДУКТОР Подаци о редуктору: Број зубаца погонског зупчаника Z = 20 Број зубаца гоњеног зупчаника Z2 = 40 Нагиб бока зупца β = 0 Померање профила х = 0 Преносни
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Διαβάστε περισσότεραТеорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Διαβάστε περισσότεραПУЖНИ ПАРОВИ Основне карактеристике и подела
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 7 ПУЖНИ ПАРОВИ Основне карактеристике и подела Пужни парови су хиперболоидни зупчасти парови чије се осе мимоилазе под углом од
Διαβάστε περισσότεραЗакони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Διαβάστε περισσότερα10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραЈАКОСТ НА МАТЕРИЈАЛИТЕ
диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА
Διαβάστε περισσότεραРЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 008 ТРАНСФОРМАТОРИ Једнофазни регулациони трансформатор направљен је као аутотрансформатор Примар је прикључен на напон 0 V Сви губици засићење
Διαβάστε περισσότεραРЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу
Διαβάστε περισσότεραФакултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)
Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге
Διαβάστε περισσότεραАнализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Διαβάστε περισσότεραСАНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА
САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА Ђерђ Варју 1 Љиљана Тадић 2 Оливер Вајда 3 УДК: 624.042.3 : 621.63 DOI: 10.14415/zbornikGFS30.01 Резиме: У раду је приказано санационо
Διαβάστε περισσότεραКОЕФИЦИЈЕНТ αcc У ПРОРАЧУНСКОЈ ВРЕДНОСТИ ЧВРСТОЋЕ БЕТОНА ПРИ ПРИТИСКУ
КОЕФИЦИЈЕНТ α У ПРОРАЧУНСКОЈ ВРЕДНОСТИ ЧВРСТОЋЕ БЕТОНА ПРИ ПРИТИСКУ Даница Голеш УДК: 69.38 DOI:.445/zbornikGFS3.4 Резиме: Коефицијентом α уводе се ефекти брзине наношења и дужине трајања оптерећења на
Διαβάστε περισσότεραПрви корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Διαβάστε περισσότεραВектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
Διαβάστε περισσότεραМашински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 6
ОСЛОНЦИ ВРАТИЛА И ОСОВИНА КОТРЉАЈНИ ЛЕЖАЈИ Лежаји су машински елементи који, у ослонцима вратила и осовина, служе за преношење оптерећења и за обезбеђење тачности положаја покретних делова у односу на
Διαβάστε περισσότεραСИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Διαβάστε περισσότερα5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Διαβάστε περισσότεραПОСТУПЦИ ЗА ПРОЦЕНУ РИЗИКА ОД ПОЖАРА. др Иван АРАНЂЕЛОВИЋ др Раденко РАЈИЋ Марко САВАНОВИЋ
ПОСТУПЦИ ЗА ПРОЦЕНУ РИЗИКА ОД ПОЖАРА др Иван АРАНЂЕЛОВИЋ др Раденко РАЈИЋ Марко САВАНОВИЋ Процена пожарних ризика је законска обавеза члан 42 Закона о заштити од пожара члан 8 Правилника о начину израде
Διαβάστε περισσότεραДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА
ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА Саша Ковачевић 1 УДК: 64.04 DOI:10.14415/zbornikGFS6.06 Резиме: Тема рада се односи на одређивање граничног оптерећења правоугаоних и кружних
Διαβάστε περισσότεραСлика бр.1 Површина лежишта
. Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.
Διαβάστε περισσότεραВаљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
Διαβάστε περισσότερα4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
Διαβάστε περισσότεραВежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.
Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој
Διαβάστε περισσότεραШтампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
Διαβάστε περισσότεραУпутство за избор домаћих задатака
Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета
Διαβάστε περισσότεραTестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
Διαβάστε περισσότεραПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе
ПРОЈЕКТОВАЊЕ РАМПЕ Рампа представља косу подземну просторију која повезује хоризонте или откопне нивое, и тако је пројектована и изведена да омогућује кретање моторних возила. Приликом пројектовања рампе
Διαβάστε περισσότεραОГРАНИЧЕЊА И ЗАБРАНЕ ЗА ДУГОТРАЈНЕ ОРГАНСКЕ ЗАГАЂУЈУЋЕ СУПСТАНЦЕ (РОРѕ)
ПРИЛОГ 2. ОГРАНИЧЕЊА И ЗАБРАНЕ ЗА ДУГОТРАЈНЕ ОРГАНСКЕ ЗАГАЂУЈУЋЕ СУПСТАНЦЕ (РОРѕ) ДИО А Листа забрањених РОРѕ супстанци из Стокхолмске конвенције о дуготраjним органским загађивачима Назив супстанце CAS
Διαβάστε περισσότεραTAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Διαβάστε περισσότεραПОЛИМЕРИ И ПЛАСТИЧНЕ МАСЕ Увод: Основни појмови, подела, дефиниција
Увод: Основни појмови, подела, дефиниција Сложене органске супстанце, које се добијају хемијском синтезом једноставнијих једињења, познатих под именом мономери. Деле се на природне и вештачке. У природне,
Διαβάστε περισσότεραПитања за усмени испит из ТЕХНОЛОГИЈЕ БЕТОНА
Питања за усмени испит из ТЕХНОЛОГИЈЕ БЕТОНА Компоненте бетона 1 Агрегат као компонента бетона: предности и мане природног (речног), односно вештачког (дробљеног) агрегата, према њиховим основним својствима.
Διαβάστε περισσότεραУНИВЕРЗИТЕТ У БЕОГРАДУ ОТПОРНОСТ МАТЕРИЈАЛА. Машински факултет Београд, 2006.
УНИВЕРЗИТЕТ У БЕОГРАДУ Милорад Милованчевић Нина Анђелић ОТПОРНОСТ МАТЕРИЈАЛА Машински факултет Београд, 2006. С А Д Р Ж А Ј СПИСАК УПОТРЕБЉЕНИХ ОЗНАКА... VII УВОД...1 1. ОДНОС СИЛЕ И ДЕФОРМАЦИЈЕ...9
Διαβάστε περισσότεραМАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. Основе, принципипијелна решења. Машине непрекидног транспорта. предавање 1.1
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање 1.1 Основе, принципипијелна решења Назив предмета: Наставник: Сарадник: МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА др Драгослав Јаношевић, ван. професор мр Саша Марковић Шифра
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Διαβάστε περισσότεραНивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом
висинских техничким нивелманом Страна 1 Радна секција: 1.. 3. 4. 5. 6. Задатак 1. За нивелмански инструмент нивелир са компензатором серијски број испитати услове за мерење висинских : 1) Проверити правилност
Διαβάστε περισσότεραПРВИ ПРОЈЕКТНИ ЗАДАТАК ИЗ КОНСТРУИСАЊА. Конструисати ручну дизалицу са са завојним вретеном према следећим подацима: N Материјал навојног вретена
ПРВИ ПРОЈЕКТНИ ЗАДАТАК ИЗ КОНСТРУИСАЊА Конструисати ручну дизалицу са са завојним вретеном према следећим подацима: Подаци за ванредне ученике: Терет који се подиже Врста навоја трапезни k Број радника
Διαβάστε περισσότεραКРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Διαβάστε περισσότεραТеорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Διαβάστε περισσότεραKОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Принципи хармонизације. Рад на хармонизованим стандардима у оквиру CEN-a
KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VI предавање Пројектовање и контрола квалитета асфалтних мешавина у складу са новим Европским нормама шк. 2015/16 год. Нови приступ стандардизацији у EU почев од 1985. године Циљ:
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότερα2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Διαβάστε περισσότεραПростирање топлоте. - Зрачењем (радијацијом) - Струјањем (конвекцијом) - Провођењем (кондукцијом)
Простирање топлоте Простирање топлоте Према другом закону термодинамике, топлота се креће од топлијег тела ка хладнијем телу, односно од више према нижој температури. На тај начин је одређен смер простирања
Διαβάστε περισσότεραРАЧУНАРСКО МОДЕЛИРАЊЕ ДРУМСКОГ МОСТА ПРИ СИМУЛАЦИЈИ ПОКРЕТНОГ ОПТЕРЕЋЕЊА
РАЧУНАРСКО МОДЕЛИРАЊЕ ДРУМСКОГ МОСТА ПРИ СИМУЛАЦИЈИ ПОКРЕТНОГ ОПТЕРЕЋЕЊА Илија М. Миличић 1 Немања Браловић 2 УДК: 624.042.3 : 624.21.095 DOI: 10.14415/zbornikGFS30.02 Резиме: У овом истраживању приказано
Διαβάστε περισσότεραРЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Διαβάστε περισσότερα6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Διαβάστε περισσότεραI Наставни план - ЗЛАТАР
I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1
Διαβάστε περισσότερα& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r
&. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да
Διαβάστε περισσότεραСтручни рад ГЕОМЕТРИЈСКА КОНТРОЛА ПРОЈЕКТА РУДНИЧКЕ ПРОСТОРИЈЕ ОБЛИКА КОСЕ ЗАВОЈНИЦЕ
ПОДЗЕМНИ РАДОВИ 14 (2005) 13-18 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ГЕОМЕТРИЈСКА КОНТРОЛА ПРОЈЕКТА РУДНИЧКЕ ПРОСТОРИЈЕ ОБЛИКА КОСЕ ЗАВОЈНИЦЕ ИЗВОД Ганић Александар 1,
Διαβάστε περισσότερα6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Διαβάστε περισσότεραРазлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q
Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са
Διαβάστε περισσότερα