Introduction to Numerical Analysis. Marek Kręglewski
|
|
- Ήράκλειτος Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Iroduo o Numerl Alss Mre Kręglews
2 Course oe Wee Wee Wee Wee Wee 5 Wee 6 Wee 7 Wee 8 Wee 9 Wee Wee Wee Wee Wee Wee 5 Soluos o oler equos oe vrle: e seo lgorm. Derel lulus. Te Newo-Rpso meod, e se meod. Iegrl lulus. Numerl egro: rpezodl rule d Smpso s rule. Tlor epso error o umerl meod Numerl dereo: orwrd d wrd-deree ormul. Tree-po ormul o umerl dereo. Il vlue-prolem or derel equos: Euler s meod, e Ruge-Ku meods. Te Rrdso s erpolo. Il vlue-prolem or derel equos: Euler s meod, e Ruge-Ku meods. Poloml erpolo: Newo d Lgrge polomls. Meods or solvg ler ssems: ler ssems o equos, Crmer s rule, Guss elmo. Appromo eor: les-squres ppromo. Ler lger, mr verso d e deerm o mr. Roud-o errors: solue error, relve error, sg dgs.
3 Course oe LABORATORY CLASSES. MS Eel geerl roduo. Applo o e MS Eel solvg umerl prolems MANUALS:. E. Seer, Mems or emss, Oord.. A. Rlso, Iroduo o umerl lss.
4 Soluo o equo oe vrle =() START READ, ε, A = = =½(+A/) NO - < ε YES WRITE STOP Tre o operos
5 Algorm oo START d STOP o sequel lgorm INPUT d OUTPUT operos = SUBSTITUTION operos LOOP? CONDITIONAL opero SUBSTITUTION vrle = epresso Clule e vlue o e epresso d sve uder e me o e vrle
6 Coverge proess: =½(+/) L R Iero proess 6
7 Dverge proess: =6-* E E E E E E+7 -.7E L R
8 Soluo o equo oe vrle Bseo meod Soluo o equo ()=,.e. ser or zero pos o e uo (). Ser or e zero po e rge <,>, w: ) e uo () s ouous ) () ges e sg e rge <,>,.e. ()*()< zero po p p p p
9 Bseo Algorm START READ,, ε ()*()< YES p=(+)/ ()*(p)< YES =p NO NO WRITE: orre rge =p Tre o operos NO - <ε YES WRITE, STOP
10 Soluo o equo oe vrle Newo-Rpso meod Te ser o zero po egs po, : ) e uo () d s rs dervve re ouous ) e rs dervve s dere rom zero zero po Te epso Tlor seres:!
11 Newo-Rpso lgorm START READ, ε = = - ( ) / ( ) NO - < ε YES WRITE STOP Tre o operos
12 Soluo o equo oe vrle Se Meod Te ser or e zero po egs rom pr o pos(, ), : ) e uo () s ouous ) ( ) ( ), we zero po Te rs dervve rom e Newo-Rpso meod ppromed w epresso:
13 Se meod lgorm START READ,, ε q =( ) q =( ) = ; = q =q ; q =( ) NO = q ( - ) /(q -q ) - < ε YES WRITE STOP Tre o operos
14 Derel Clulus Dervve o uo mesure ow rpdl e depede vrle ges w ges o e depede vrle =() Tge le (α) (slope) = - α = - lm lm d d dervve
15 Derel Clulus Fd e dervve o e uo = Le = - d = ( )-( ) = ( ) -( ) = ( +) -( ) = [( ) + +() ]-( ) = = [ +() ] Aer dvdg I e lm s (.e. ) d d lm Te dervve o e uo = s d/d=
16 Derel Clulus Dervves o some elemer uos ( s os): Fuo =() Dervve d/d= () - l() l() / s() os() os() -s() Le () d z() re derele uos o : d d z d dz d z d dz d z d d d d d d dz d d z d d / z d d dz z d d z Compose uo (u()) d d d du du * d
17 Iegrl Clulus prpl s Te dervve F() o () s e uo su df()/d=() Te dee egrl s e sme g s e dervve uo A dee egrl s e lm o sum o erms () d F F
18 Iegrl Clulus - emples A r moves w os velo v()=5 m/. Clule e dse overs ours. s s v( ) 5m/ * m v d 5d 5 5* 5* m A soe s llg w e elero g() = m/s. A e egg s velo s m/s. Clule e dse e soe overs ewee d d seod o e ll. v v s v g( ) d d os d os d 5 5* 5* 8 6m
19 Numerl egro T T d m m m T T T m * * T T T m m m *, m m T T T T Trpezodl rule T m
20 Numerl egro S d m S S S m m m m *, / m m m m S S S S / Smpso s rule S m/ m mus e eve
21 All egro emple I ( ) d ()= d 68 ()= d ,
22 Numerl egro emple I ( ) d () T ( ) T ( ) S( ) 78 *78 78 * Clulo resuls T(=) T(=) S(=) ,67 I (ure) , ()= ()= T( ) T( ) S( ) 76 * * T() T()-I Errors o e rpezodl rule error T() T()-I ,6 9,6
23 Geomer seres /* S S S S S S r r We = ) Te sum s equl o ) s seres epso o e uo
24 Mlur Seres ) (,,, oss 6 ) "( ) ( d d d d Tus ()! "()! ()!!!! ()! "() ()
25 Tlor Seres ) (,,, oss 6 ) "( ) ( d d d d Tus ) (! ) "(! ) (!!!! ) (! ) "( ) (
26 Mlur Seres - emple e, Clule e vlue (6) usg e Mlur seres e " e e * Cll e Tlor seres
27 Numerl dereo ) ( ) ( lm ) ( ) ( lm Oe-sde ppromo: L R ) ( ) ( ) ( ) ( - + (+) () (-) Te verge o R L (erl dervve): L R ) ( ) ( Deo o dervve
28 Dereo e error!!!!!!! /:!!! dervve error! : /!! dervve error Oe-sde dervve Cerl dervve _
29 Clulo o dervve Clule e dervve o l() e po = usg e erl dervve meod d oe-sde meod or dere sep leg : ()=l() l()=/ l()=.986 ()=[(+)-(-)]/(*) () () error ^ error/^ ()=[(+)-()]/ + (+) () error error/ Te deresg sep mmzes e error. Te resuls re dere or dere meods
30 Derel equo s order Derel equo or rdove de Suggesed soluo: Ceg e orreess: Susuo: Le sde equl o rg sde, we: dn d N N dn d e N e e e e Cos deermed rom e l odo: Fl l soluo: rdove de os N e N N N N N e
31 Rdove de Derel equo or e rdove de dn d N Al soluo: Hl-le perod : N N N e e N e l N l N l
32 Derel equo e Euler meod Te equo ( s ow uo): Approme epresso or e dervve: Aer rsormo: Smpled oo: d d d d, d, d d d Te ls epresso llows or sep sep lulo o e uo (). Te vlue o e uo e zero sep deermed rom l odo.
33 Derel equo s order dn N d N dn/d Nl N Nl.5.5
34 Derel equo d order Hrmo osllo F p = m - elero F w = - - poso Assumpo: m= = Te le o ores: F p = F w Tus =- " d d Spe soluos: e e e e e e e Geerl soluo: e e Coss deermed rom l odos F
35 Derel equo d order e e - Il odos: e e e e Geerl soluo ludg e l odos: e e os
36 Numerl soluo I d d v d d d dv were : Suesve pplo o pprome epressos or e rs dervve: v v v v v v v v Noo: v v v From e equo resuls:
37 Numerl soluo I o. For = : m v m s () () v() () Oe-sde epresso or e dervve v () v() ()
38 Numerl soluo II d d v d d d dv were : Approme epressos or e erl-dervves: v v v v v v v v Noo: v v v From e equo resuls:
39 Numerl soluo II o. For = : m v m v v s () () v(+/) () Cerl dervve v () v(+/) ()
40 Rrdso s erpolo We lulg e umerl resul w e sep, s possle o esme e resul e lm? F p r O r p F() e resul or e sep = F() poel resul or = p e order o e umerl error Le s lule e umerl resul F or wo dere sep legs (q) F F F F p r O p q q O r q p p p q q /* q p
41 Rrdso s erpolo o. r O q q F F F p s error o ger order d e proess e oued. Te mos reque sep ge q=, d e: r O F F F p p p p p p p p p q q F F q q q F q q F q Susruo o o equos
42 Rrdso s erpolo emple I d 68 Numerl resuls w e rpezod meod: T() T T T
43 Rrdso s erpolo emple ()=l() l()=/ ()=[(+)-(-)]/(*) F() / Te erl dervve meod error, us p=. = F()-F()
44 Te erpolo poloml Te uo () s gve s le,.e. s vlues re ow (+) pos (odes) ( ), ( ), ( ),, ( ). Prolem: d poloml o e - order su s: w( )= ( ) w( )= ( ) w( )= ( ) w () s lled e erpolo poloml. Gols o e erpolo: smple preseo o e uo vlues (oees) eeuo o meml operos usg e poloml deermo o e ermede vlues o e uo
45 Clulo o e poloml vlue Nurl orm o e poloml w Te Horer s seme o e lulo w
46 Clulo o e poloml vlue Algorm START red, { }, w= =- w=w*+ =- YES NO wre w STOP
47 Tre o e lulo w ()=+- + = = = =- = Clule e vlue o e poloml =. w *-= *+= *+= - Te vlue = s.
48 Newo orm o e poloml Le,,,, - re gve umers, were e vlues o poloml re gve (e d). Aulr polooml p (=,,,,) re deed p () = p () = - p () = (- )(- ) p ()= (- )(- ) (- - ) Te poloml w () s gve s w p How o deerme e oees?
49 Deermo o e oees () [ l, l+ ] [ l, l+, l+ ] ( ) ( ) ( ) ( ),,,,,,,,,,,,,,
50 Emple )) ) ( )( ( )( ( w w p p p p () [, ] [,.., ] [,, ] = = 8 = 58 =
51 Ler erpolo ler uo: w ()= + ( ) = = + (/ ) ( ) = = + (/ ) Clule, - = =( - )/( - ) - = =( )/( - ) w ()= [( )/( - )] + [( - )/( - )] w ()= [( + )/( - )] + [( - )/( - )] w ()= + [( - )/( - )] (- ) I s Newo poloml w () = p () + p (), were p () = = p () = - = ( - )/( - )
52 Te Ruge ee We erpolg w poloml o g order, eg. o e - order or e uo e rge[-,] or eqds odes ( ) 5 = - + *, =,,,, () w() E E
53 Te Ruge ee Compre e epressos or e uo (dr le)d poloml (gre le):
54 Clulo ur Error soures: Errors o pu d Roudg errors Cug errors Smplo o model Rdom errors Asolue d relve erros: Approme vlue E vlue Asolue error Relve error r
55 Roudg d ug roudg ug,97,,9 -,97 -, -,9 Roudg o deml dgs Error o e umer ½ - Emple:, ½ - =,,5 Roudg o umers edg w dg 5?,5,,5, Error reduo we lulg sum
56 Errors o luled ques Addo d Suro,,,, m,,,,,8 m,,,,,7,75,5 W s e error o sum? W s e error o deree? m,,,,,9 m,,,,,8,89,5
57 Errors o luled ques Addo d Suro Smlrl: Te solue error o sum or deree s equl o e sum o solue errors o ompoes.
58 Reduo o sg dgs %,,,,,,576,576,576,576 r Asolue error Relve error
59 Errors o luled ques Mulplo d dvso r r r r r r r r r r r r r r Smlrl: r r r r Te relve error o produ or dvso s equl o e sum o relve errors o e ors.
60 Use o dere rules or e error rser Clule e roos o e lger qudr equo w e ur o 5 sg dgs ,98 8 7,98,8 Ol sg dgs 8 7,98 55,98 5 sg dgs r,5,8 r,5 55,98 9 6
61 Use o dere rules or e error rser Te Vee s relos ,98,5,786,5,786 55,98 55,98 7,98 8 7, r r
62 Mml errors o luled ques r,,,,,, Te uo s gve All vrles re gve w errors. W s e error o luled qu?
63 Mml error emple 6%,6,,, r,,,
64 Sdrd errors o omple epressos,,,,,,,,, s s s s s s s s s A gve uo Te s re sdrd errors o prmeers. W s e sdrd error o omple vlue?
65 Emple,, s s s s s s s,,, s s s
66 Ler regresso 5 5 (, ) 5 (, ) 6 8 Ler regresso: =*+ Gol: Deermo o opmum vlues o d. 66
67 Ler regresso Bs ssumpos: ) Rdom dsruo o roud e srg le ) Te vro σ depede o Les squres meod:, Deermo o m Φ(,) w respe o d :,, 67
68 68 Ler regresso Soluo o e equos ssem w respe o, :
69 Ler regresso Esmo o vre or : s Esmo o vre or prmeers d : s s Ler orrelo oee r r ov vr s, S vr S S s Te vlue o r sps rom - o +. r> des posve orrelo, r< egve orrelo ewee d. r= des e l o ler orrelo ewee d. 69
70 Ler regresso emple
71 [m] [g] * * -*- (-*-)^ -sr -sr Sum: = -.6 g/m = g s^=.5 s=.7 g s^=. s=.55 g/m s^=. s=.66 g sr= 5 ov(,)= -6.8 sr= - vr()= 8. vr()= 69.6 r(,)=
72 More ou regresso - qudrs IV III I II μ Qudrs: μ I -μ < -μ < (-μ )(-μ )> II -μ > -μ < (-μ )(-μ )< III -μ > -μ > (-μ )(-μ )> IV -μ < -μ > (-μ )(-μ )< ov(, ) ov, 7
73 r ov vr Ler regresso oee, S vr S S r=- -<r< r= <r< r= 7
74 Eess ssem o ler equos J J ε ε ε J T T We ser or soluo, were e vlue o T s mml. J J J J J J J J J ε ε J J J J J J J J J J J T T T T T T T T T T T T T T T T T T T T T T Te opl vlues o prmeers w mmze e sum o squres
75 Emple o e mr represeo 9,5 5, * de J J J J J J J J T T T T
76 Vre o e vrle 8 J Vre s, 5,,9 9,5,,7 ε T ε,,9,,7 ε s,,9,,7, 9 Vres d ovre 5,8 s ov(, ) ov(, ) s s, J T J,9* Ler regresso oee r ov(, ) 58,6*8,, 9 s s
77 Jo Te model uo e ler regresso = * +. Jo s mr o dervves over prmeers, ll pos o d =,,, J We g e d o e poloml o e d order = + * + *, e e Jo es orm o: J
78 Deovoluo o omple d Epermel d Te d sould e epressed s sum o Guss urves P e - eg - poso - wd 78
79 Te les squres meod { }, =:M, M ed prmeers Te error uo (sum over pos): Φ{ } = j [ j (ep) - j ({ }] Prolem To mmze Φ roug modo o { } usg e srg vlues o prmeers { } 79
80 Te error uo d Jo 8 e P e P e P N P P e P Deomposo over N ds Elemes o e Jo
81 Algorm 8 P P P P P P P P J Y Correos o e vlues o prmeers { } J T Y J T J
82 Te les squres meod Kro Psmo rozłożoe słdowe
83 Mres
84 Solvg se o ler equos A A A A A Emple + + = + + = + + = 8 A A 8 A =- = =
85 Mres d geomerl rsormos verso P mrror releo P roo os s s os P φ Trsormo mres re orogol Q Q Q Q Q T Q Q Q Q Q T os s s os os s s os os s s os Q Q Q Q Q T
86 Smlr rsormo o mres Mppg A, rsorms : A I veors d re rsormed o veors roug mppg Q, w s mppg o veor o veor? Q I d, Q A AQ Q I e mr Q s o sgulr, us Q Q Q Q AQ AQ B Te mres A B re wo mres rsormed roug smlr rsormo B Q AQ
87 Emple os s s os Q φ=-5
88 Emple (, )=(,) (, )=(,-) += -=- -5 (, )= (, )=,,
89 Crers equo λ slr, A() I() K() K = A λi rers mr o mr A dek = K(λ) = de(a - λi)=a - λi= rers equo K(λ) = λ + - λ λ λ + = Te roos o e poloml K(λ): λ, λ,, λ -, λ re lled egevlues o mr A. I B = Q - AQ, e rers equo or B K = B λi = Q - AQ - Q - IQ = Q - (A - I)Q, d e deerm dek =B - λi= Q - A - λi Q = A - λi= Two mres reled o e oer roug smlr rsormo ve e sme se o egevlues.
90 Egevlues, de, de I I A B A B
91 Dgol mr d d d d d d d d d d d d d d d d,,,, I D I D D C we rsorm gve qudr mr A o dgol mr D roug smlr rsormo?
92 Dgolzo s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os os s s os os s s os os s s os os s s os AQ Q A Q Now we se e odgol elemes o zero: 8 os s s os Aer e rsormo:, s os s os
93 Egevlues d egeveors C - AC s smlr rsormo w dgolzes e mr A. Colums o e mr C o egeveors. I e mr C s orogol, C - =C T, d C - AC = C T AC. os C s 8 s 8 os 8 8 os s 8 8 s os 8 8 Mulplo o e mr A o o sdes e egeveor produes respeve egevlue: os 8 os s os s 8 os s os os os s s os s os s 8 I geerl: 8 8 T A ,,, 8 s s 8 8
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES
Journl of Alger umer Teor: Avne n Applon Volume umer 9 Pge -7 MATRICES WITH COVOLUTIOS OF BIOMIAL FUCTIOS THEIR DETERMIATS AD SOME EXAMPLES ORMA C SEVERO n PAUL J SCHILLO Meove Lne Wllmvlle Y USA e-ml:
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation
Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P Ορίζουµε : { } { } m m : M m : Ε λάχιστο
Generalized Modified Ratio Estimator for Estimation of Finite Population Mean
Jourl of Moder Appled Sttstcl Methods Volume Issue Artcle 7 --03 Geerlzed Modfed Rto Estmtor for Estmto of Fte Populto Me Jmbulgm Subrm Podcherr Uverst, Puducherr, Id, drjsubrm@hoo.co. Follow ths d ddtol
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =
EXERCICIOS DE REORZO: DETERMINANTES Pr A, lul riz X que verifi AX A B, sendo B ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC
Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics
apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Probability and random variables: Bernoulli trials; Poisson Stochastic Processes: independent increments; Wiener & Poisson
ΠΜΣ 54 Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων Ιωάννης Σταυρακάκης Αντώνης Παναγάκης Bc o Sochc rocee clug Mrov Bc Newor Moelg erormce vluo Deg Μοντελοποίηση και Αναλυση Απόδοσης Δικτύων - Ιωάννης Σταυρακάκης
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P O r ίz o u µe : { } { } m m : M m :
Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ
Μοντζλα ταθρών και τυχαίων πιδράων Κατιλζροσ Ανατάιοσ 08 Ανάλυη μοντζλου ταθρών πιδράων μ ζνα παράγοντα Αν ο ρυνθτισ πιλζγι να χρθιμοποιιι το πίραμα του κάποια υγκκριμζνα πίπδα νόσ παράγοντα και τα υμπράματα
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
SONATA D 295X245. caza
SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.
Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης ηµήτρης Λέκκας η διάλεξη Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Περιγραφή Πρόγνωση Μέθοδοι Ανάλυση δεδοµένων Πρόγνωση µε Συναρτήσεις
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Low ESR Tantalum Capacitors (TCR Series)
Low SR Tnlum pciors (TR Series) Pr Numer Srucure Feures: RoHS omplin nd Hlogen Free Lower SR hn sndrd Tnlum xcellen frequency chrcerisics nd impednce Lser mrking for esy idenificion Volge rnge: 4V o 50V
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
ITU-R SA (2010/01)! " # $% & '( ) * +,
(010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.
ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝ. ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.
. F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Single Stock Analysis Stock Pair Analysis Portfolio Dates Portfolio Dates Correl Maturity VolRatio Ref Stock Correl Ref Stock
Single Stock Analysis Stock Pair Analysis Portfolio Dates Portfolio Dates orrel Maturity Date Monday, December 21, 2009 Date Monday, December 21, 2009 30 Percentile Date Friday, December 19, 2008 Percentile
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1
VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Για να μιλήσουμε για περισσότερα από ένα πρόσωπα, ζώα ή πράγματα, συνήθως προσθέτουμε το s στο τέλος μίας λέξης. four sisters
Lesson 1 Two dogs nd one ll! 1 Red. Plurls Γι ν μιλήσουμε γι περισσότερ πό έν πρόσωπ, ζώ ή πράγμτ, συνήθως προσθέτουμε το s στο τέλος μίς λέξης. four sisters one sister two insects one insect Circle. 1
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
2010 Offroad Standard & Flame fixed discs
New Flame discs March 23/9/2010 2010 2010 Offroad Standard & Flame fixed discs APRILIA APRILIA RXV, MXV 450 450 2005-2010 - - - 110315 97 APRILIA SXV 450 450 2005-2010 - 112067 252-110315 97 APRILIA RXV
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,