EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =
|
|
- Ἀγλαΐη Παυλόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 EXERCICIOS DE REORZO: DETERMINANTES Pr A, lul riz X que verifi AX A B, sendo B ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo I riz unidde de orde ii Clul riz X que verifi XA A X ) Esud, segundo os vlores de, o rngo d riz A ) Coinide A o sú invers pr lgún vlor de? ) Deerin unh riz siéri X de orde l que X e o deerinne d riz X se 9 ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Sen I riz idenidde de orde e A, deerin os vlores de λ pr os que A + λi non en invers ) Clul riz X que verifi AX A X, sendo A riz dd no prdo ) Dds s ries A, B, sen B riz rspos de B e I riz idenidde de orde ) Esud, segundo os vlores do práero λ, o rngo de AB + λi ) Clul riz X que verifi: AB X X B 6 Deerin ods s ries B d for que verifiquen B B Se lgunh é inversile, lul sú invers 7 Dd riz A : ) Clul, segundo os vlores de, o rngo de A ) Coinide A o sú invers pr lgún vlor de? Pr, lul A 6
2 8 Dd riz A, esud, segundo os vlores de, o seu rngo 9 Clul, segundo os vlores de, o rngo de A lul o deerinne d riz A A Pr, Sen C, C, C s oluns prieir, segund e ereir, respeivene, dunh riz drd M de orde on de(m) Clul, enunindo s propieddes de deerinnes que uilies, o deerinne d riz us oluns prieir, segund e ereir son, respeivene, C, C C, C + C ) Se A é unh riz l que A + I, sendo I riz idenidde e O riz nul de orde, l é o rngo de A? Clul o deerinne de A Clul A no so de que se unh riz digonl verifindo iguldde nerior ) Dd riz B, lul unh riz X l que BXB B B Dd riz A : ) Se I é riz idenidde de orde, lul os vlores de λ pr os que A + λi non en invers Clul, se eise, riz invers de A I ) Clul riz X l que XA + A X, sendo A riz rspos de A ) Pon un eeplo de riz siéri de orde e ouro de riz nisiéri de orde ) Se M unh riz siéri de orde, on de(m) Clul, rzondo respos, o deerinne de M + M, sendo M riz rspos de M ) Clul unh riz X siéri e de rngo que verifique: X ) Dd riz A, lul os rngos de AA e de A A, sendo A riz rspos de A Pr o vlor, resolve euión riil AA X B, sendo B ) Se M unh riz drd de orde on de(m) e que deis verifi M + M + I, sendo I riz unidde de orde Clul os deerinnes ds ries: M + I e M + I ) Esud, segundo os vlores de o rngo d riz M 8
3 ) Resolve euión riil A X B, sendo A, B 6 Dd riz A : ) Clul os vlores de pr os que A en invers ) Pr, lul riz X que verifi: XA + X A 7 ) Esud, segundo os vlores de, o rngo d riz M ) Pr o vlor, resolve euión riil MX A, sendo A e A riz rspos de A Pr ese vlor de, no vlerá o deerinne d riz M? 8 Sen,, s fils prieir, segund e ereir, respeivene, dunh riz drd M de orde, on de(m) Clul o vlor do deerinne d riz que en por fils,, + 9 Dd M, lul riz Y que verifi MY + M Y I, sendo M riz invers de M e I riz unidde de orde Ah ods s ries A ( ij ), drds de orde res, les que e A + A I, sendo I riz idenidde de orde res e A riz rspos de A, ds que deis sáese que o seu deerinne vle
4 EXERCICIOS DE REORZO: DETERMINANTES (SOLUCIONARIO) Pr A, lul riz X que verifi AX A B, sendo B A eise A AX A B X (A ) B A (A ) X (A ) B Polo no: X ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo I riz unidde de orde ii Clul riz X que verifi XA A X ) Ddo un eleeno ij dunh riz drd n n, o supriir sú fil e sú olun, oense unh suriz (n ) (n ) e o seu deerinne é un enor de orde n, que se h enor opleenrio do eleeno ij e represénse por M ij Cháse duno de ij o núero A ij ( ) i+jm ij, é diir, é o enor opleenrio o seu signo ou o signo onrrio, segundo i + j se pr ou ipr ) i I A ( λ) + ( λ) ( λ) + ( λ) ( λ)[ λ + λ ] ( λ)( λ + λ ) λ( λ)(λ )
5 Se λ : Se λ : Se λ : Polo no: Pr λ, λ, λ, rngo(a λi) Pr λ, rngo(a λi) Pr λ, rngo(a λi) Pr λ, rngo(a λi) ii XA A X X(A I) A X A(A I) I A 6 (A I) 6 6 X Polo no: X ) Esud, segundo os vlores de, o rngo d riz A ) Coinide A o sú invers pr lgún vlor de? ) Deerin unh riz siéri X de orde l que X e o deerinne d riz X se 9 ) rngo(a) + + Polo prdo i, sáese que eise (A I)
6 6 Polo no: Se ou, enón rngo(a) Se ±, enón rngo(a) ) A A A I A 9 Coo +, pr odo, pódese firr: A I, pr odo ) Por ser unh riz siéri de orde : X endo o produo ds ries: E ondiión sore o deerinne: 9 de(x) 9de(X) de(x) Tense sí un sise de res euións on res inógnis: Polo no: X ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Sen I riz idenidde de orde e A, deerin os vlores de λ pr os que A + λi non en invers ) Clul riz X que verifi AX A X, sendo A riz dd no prdo ) ) Ddo un eleeno ij dunh riz drd n n, o supriir sú fil e sú olun, oense unh suriz (n ) (n ) e o seu deerinne é un enor de orde n, que se h enor opleenrio do eleeno ij e represénse por M ij Cháse duno de ij o núero A ij ( ) i+jm ij, é diir, é o enor opleenrio o seu signo ou o signo onrrio, segundo i + j se pr ou ipr ) A + λi non en invers I A A I ( + λ) ( + λ) ( + λ)[( + λ) ] ( + λ)(λ + λ ) ( + λ)(λ )(λ + )
7 7 Polo no: A + λi non en invers ) AX A X (A I)X A X (A I) A I A + (A I) X Polo no: X Dds s ries A, B, sen B riz rspos de B e I riz idenidde de orde ) Esud, segundo os vlores do práero λ, o rngo de AB + λi ) Clul riz X que verifi: AB X X B ) AB + λi + λ de(ab + λi) λ(λ + )(λ ) + λ λ(λ ) + λ λ Polo no, de(ab + λi) λ Se λ, enón AB + λi Polo prdo ), sáese que eise (A I) ils proporionis il de eros
8 8 Tense sí que: rngo(ab + λi) se λ rngo(ab + λi) se λ ) AB X X B (AB I)X B X (AB I) B Clúlse (AB I) : AB I de(ab I) (AB I) Polo no: X 8 6 Deerin ods s ries B d for que verifiquen B B Se lgunh é inversile, lul sú invers ( ) ou Se : ou Se : ± Polo no, s ries que upren s propieddes do eeriio son:,,, Dess ries, úni que en deerinne disino de ero, e polo no invers, é riz A sú invers é riz Eise (AB I) pois pr λ, rngo(ab I)
9 9 7 Dd riz A : ) Clul, segundo os vlores de, o rngo de A ) Coinide A o sú invers pr lgún vlor de? Pr, lul A 6 ) rngo(a) + ; + ± Polo no: Se ±, enón rngo(a) Se ±, enón rngo(a) ) A A A I A Polo no: A A Se, áse de oer que A I, enón A 6 (A ) I I 8 Dd riz A, esud, segundo os vlores de, o seu rngo A ( + ) Clúlse, por Ruffini, s ríes de + : ± Polo no: A (ríz dore) Se : rngo(a)
10 Se : rngo(a) Se : rngo(a) Se rngo(a) (s res fils son iguis e hi un eleeno non nulo) Resuindo: rngo(a), se,, rngo(a), se ou rngo(a), se 9 Clul, segundo os vlores de, o rngo de A lul o deerinne d riz A A Pr, A ( + ) + ( + ) ( + )( + ) Polo no: A Se : Se : Se : Resuindo: rngo(a) rngo(a) rngo(a), se,, rngo(a) rngo(a), se ou ou Se : A de(a) 6, e poso que de(a) de(a ), de(a ) e deis que o de(a) deerinne dun produo de ries é igul o produo dos deerinnes dess
11 ries e que pr unh riz M de orde, se verifi que de(λm) λ de(m), ense de(a A ) Sen C, C, C s oluns prieir, segund e ereir, respeivene, dunh riz drd M de orde on de(m) Clul, enunindo s propieddes de deerinnes que uilies, o deerinne d riz us oluns prieir, segund e ereir son, respeivene, C, C C, C + C Se se lle h N á riz d que se quere lulr o deerinne: de(n) de( C, C C, C + C ) de( C, C C, C ) de( C, C, C ) *** * * ** de( C, C, C ) de(c, C, C ) 8 Propieddes uilizds: (*) Se unh olun se lle su our olun uliplid por un núero, o deerinne non vrí (**) Se se ulipli d eleeno dunh olun por un núero, o deerinne des riz qued uliplido por ese núero (***) Se se perun dús oluns dunh riz, o deerinne i de signo ) Se A é unh riz l que A + I, sendo I riz idenidde e O riz nul de orde, l é o rngo de A? Clul o deerinne de A Clul A no so de que se unh riz digonl verifindo iguldde nerior ) Dd riz B, lul unh riz X l que BXB B B ) A + I A I [de(a)] de(a) rngo(a) A (A ) ( I) I de(a ) Se A é deis unh riz digonl: A A I ) de(b) eise B BXB B B X B (B + B ) B B + (B ) A I B (B ) 6 (B ) X B + (B )
12 Dd riz A : ) Se I é riz idenidde de orde, lul os vlores de λ pr os que A + λi non en invers Clul, se eise, riz invers de A I ) Clul riz X l que XA + A X, sendo A riz rspos de A ) A + λi I A (λ ) (λ + ) Polo no, A + λi non en invers A I I A ( ) ( ) 9 (A I) 9 9 ) XA + A X X(A I) A E, polo prdo nerior, sáese que A I en invers Polo no: X A (A I) X ) Pon un eeplo de riz siéri de orde e ouro de riz nisiéri de orde ) Se M unh riz siéri de orde, on de(m) Clul, rzondo respos, o deerinne de M + M, sendo M riz rspos de M ) Clul unh riz X siéri e de rngo que verifique: X ) Eeplo de riz siéri de orde : Eeplo de riz nisiéri de orde : ) M siéri ( ij ji ) M M M + M M Enón, endo en on que M é de orde : de(m + M ) de(m) de(m) 8
13 ) X drd e de orde e siéri X rngo(x), e non odos nulos Tense sí: X ) Dd riz A, lul os rngos de AA e de A A, sendo A riz rspos de A Pr o vlor, resolve euión riil AA X B, sendo B ) Se M unh riz drd de orde on de(m) e que deis verifi M + M + I, sendo I riz unidde de orde Clul os deerinnes ds ries: M + I e M + I ) AA AA ( + ) + + >, pr odo núero rel rngo(aa ) ) ( AA rngo(a A) AA AA eise (AA ) (AA ) AA X B (AA ) (AA )X (AA ) B X (AA ) B ) M + M + I M + I M de(m + I) de( M ) ( ) ( ) A E, polo prdo nerior, sáese que A I de(m + I) de((m + I)) de(m + I) 7
14 ) Esud, segundo os vlores de o rngo d riz M 8 ) Resolve euión riil A X B, sendo A, B ) M M Polo no: rngo(m) rngo(m) (ª ª e ª ª) ) A Coo A, eise riz invers de A e ense: A X B X (A ) B (A ) X 6 Dd riz A : ) Clul os vlores de pr os que A en invers ) Pr, lul riz X que verifi: XA + X A ) A ( ) A ou Así, A en invers pr os vlores de disinos de e ) ; XA + X A XA + X A X(A + I) A Pr poder desper X esúdse se riz A + I en invers: I A + eise (A + I) Enón, X A(A + I)
15 Clúlse (A + I) : (A + I) E sí: X 6 7 ) Esud, segundo os vlores de, o rngo d riz M ) Pr o vlor, resolve euión riil MX A, sendo A e A riz rspos de A Pr ese vlor de, no vlerá o deerinne d riz M? ) M M Polo no: rngo(m) rngo(m) (ªC e ªC son de eros) ) olun de orde riz A drdde orde Mriz X é unh riz olun de orde z z z X 6 de(m) de(m ) ( ) de(m ) ( ) 8 8 Sen,, s fils prieir, segund e ereir, respeivene, dunh riz drd M de orde, on de(m) Clul o vlor do deerinne d riz que en por fils,, + Sáese que Enón, pols propieddes dos deerinnes, ense que
16 6 9 Dd M, lul riz Y que verifi MY + M Y I, sendo M riz invers de M e I riz unidde de orde M M MY + M Y I Y (M + M ) e on M + M, oense que Y Ah ods s ries A ( ij ), drds de orde res, les que e A + A I, sendo I riz idenidde de orde res e A riz rspos de A, ds que deis sáese que o seu deerinne vle A A A + A I + A de(a) 8 Enón: A ou A
EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS
EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS. ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo
MATRICES. 1º- Dadas as matrices: Calcula: 2º- Sexan as matrices: . Existe unha matriz A que verifique. 3º- Atopa unha matriz X tal que C.
Eriios d ris rlos dl Río Váqu Rfl Vidl Mijón MTRIES º- Dds s ris: 8 9, lul:,,,,, º- Sn s ris: Eis unh ri qu vrifiqu? º- op unh ri X l qu X, sndo: ) ) º- Rsolv o sis riil: Y X Y X sndo: º- opro o vlor dos
EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2
EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS Dds s ecucións seguintes indic s que son lineis: ) + + b) + u c) + d) + Dd ecución linel + comprob que s terns ( ) e ( ) son lgunhs ds sús solucións
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
EXERCICIOS DE ÁLXEBRA. PAU GALICIA
Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
Tema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
Introdución ao cálculo vectorial
Intoducón o cálculo ectol 1 Intoducón o cálculo ectol 1. MAGNITUDES ESCALARES E VECTORIAIS. Mgntude físc é todo qulo que se pode med. Mgntudes escles son quels que están detemnds po un lo numéco epesdo
Matrices. Chámase matriz de orde m x n a unha disposición en táboa rectangular de m x n números reais dispostos en m filas e n columnas
. Introdución. Mtrices: definición. Tipos de Mtrices. Opercións cos mtrices. Sum de mtrices. Diferenz de mtrices Mtrices. Produto dun número por unh mtriz. Produto de mtrices. Produto de mtrices cdrds.
I. MATRICES. 1.- Matriz de orden mxn. Igualdade de matrices. 2.- Tipos de matrices
I. TRICES.- riz de orde mx. Iguldde de mrices U coxuo de m. elemeos du corpo K (e xerl úmeros reis, elemeos do corpo R) disposos e m fils e colums, chámse mriz de dimesiós m. ou mriz do ipo (m, ) O ermo
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
MATEMÁTICAS I. Exercicio nº 1.- a) Clasifica os seguintes números segundo sexan naturais, enteiros, racionais ou reais: 3
MATEMÁTICAS I Eercicio nº.- ) Clsific os seguintes números segundo sen nturis, enteiros, rcionis ou reis: 5, 7,5 8 8 7 Indic se s seguintes firmcións son verddeirs ou flss, rzondo respost: Todos os números
Determinantes. 1. Introdución. 2. Determinantes de orde dúas. 1. Introdución 2. Determinantes de orde dúas. 3.3 Determinantes de orde tres
Determnntes. Introducón. Determnntes de orde dús. Determnntes de orde tres. Menor complementro dun elemento. dxunto dun elemento. Determnntes de orde tres. Propeddes dos determnntes de orde tres. Rngo
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
Tema 1 : TENSIONES. Problemas resueltos F 1 S. n S. O τ F 4 F 2. Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.
Tea : TENSIONES S S u n S 4 O Probleas resuelos Prof: Jae Sano Dongo Sanllana EPS-Zaora (USL) - 8 -Las coponenes del esado de ensones en un puno son: N/ -5 N/ 8 N/ 4 N/ - N/ N/ Se pde deernar: ) Las ensones
TRIGONOMETRIA. hipotenusa L 2. hipotenusa
TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Problemas resueltos del teorema de Bolzano
Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Comportamento meccanico dei materiali
Comomeno meno de mel Tosone Il so delle v Tosone Solleon d osone nelle seon ol Solleon d osone nelle seon engol Solleon d osone nelle seon ee ee sole Solleon d osone nelle seon ve ee sole Confono seon
Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...
Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson
1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
Números reais. Obxectivos. Antes de empezar. 1. Os números reais... páx. 4 Números irracionais. Números reais
Números reis Oectivos Nest quincen prenderás : Clsificr os números reis en rcionis e irrcionis. Aproimr números reis por truncmento e redondeo. Representr grficmente números reis. Comprr números reis.
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
QUALITES DE VOL DES AVIONS
QUALITES DE OL DES AIONS IPSA Philippe GUIETEAU ONERA/DPRS/PRE Tel : 69 93 63 54 : 69 93 63 Eil : philippe.uicheteu@oner.r Qulités de vol des vions (/4) 4 Petits ouveents lonitudinu 4. Principe de linéristion
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Páin 03 REFLEXION E RESOLVE Prolem Pr lulr ltur dun árore, podemos seguir o proedemento que utilizou Tles de Mileto pr lulr ltur dun pirámide de Eipto: omprr sú somr o dun vr vertil
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ
8 Raimon Novell ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ Η ΜΑΡΙΑΝΉ ΠΑΙΔΑΓΩΓΙΚΗ ΑΠΑΝΤΗΣΗ ΜΕ ΒΑΣΗ ΤΙΣ ΡΙΖΕΣ ΚΑΙ ΤΗΝ ΠΑΡΑΔΟΣΗ ΤΗΣ ΚΑΙ ΟΙ ΣΥΓΧΡΟΝΕΣ ΠΡΟΚΛΗΣΕΙΣ 1.- ΑΠΟΣΤΟΛΗ, ΧΑΡΙΣΜΑ, ΠΑΡΑΔΟΣΗ ΚΑΙ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109
PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
AB. Cando, pola contra, se toma B como orixe e A como extremo, o segmento
VECTORES Índce. Vecores.... Operacóns con ecores en forma gráfca.... Combnacóns lneas de ecores..... Bases e coordenadas dun ecor... 4.. Operacóns con ecores expresados polas súas coordenadas... 5 4. Produo
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc
Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc Rémi Vannier To cite this version: Rémi Vannier. Profiterole : un protocole de partage équitable de la bande
934 Ν. 9<Π)/94. Ε.Ε. Παρ. 1(H) Αρ. 2863,43.94
Ε.Ε. Παρ. 1(H) Αρ. 286,4.94 94 Ν. 9
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016
Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:
5.1. Relaciones elementales. Dado el triángulo ABC, que se muestra en la figura
Cpítulo 5 Triángulos Hemos trbjdo on el triángulo retángulo en generl hor estudiremos un triángulo ulquier y sus reliones más importntes. 5.1. Reliones elementles Ddo el triángulo ABC, que se muestr en
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Semellanza e trigonometría
7 Semellnz e trigonometrí Obxectivos Nest quincen prenderás : Recoñecer triángulos semellntes. Clculr distncis inccesibles, plicndo semellnz de triángulos. Nocións básics de trigonometrí. Clculr medid
Θέμα εργασίας: Η διάκριση των εξουσιών
Μάθημα: Συνταγματικό Δίκαιο Εξάμηνο: Α Υπεύθυνος καθηγητής: κ. Δημητρόπουλος Ανδρέας Θέμα εργασίας: Η διάκριση των εξουσιών Ονοματεπώνυμο: Τζανετάκου Βασιλική Αριθμός μητρώου: 1340200400439 Εξάμηνο: Α
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων
Αναπαραστάσεις και πεπερασµένων οµάδων Αθήνα, Φεβρουάριος-Μάρτιος 2016 Αναπαραστάσεις και πεπερασµένων οµάδων 1 Αναπαραστάσεις 2 3 4 Αναπαραστάσεις και πεπερασµένων οµάδων Ορισµός H χώρος Hilbert πεπερασµένης
1 Galois Theory, I. Stewart. https://repository.kallipos.gr/bitstream/11419/731/4/book Galois theory.
Χαρά Χαραλάμπους Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 10 Απριλίου 2016 Με βάση την ομιλία (30.3.16) στην 8η Διεθνής Μαθηματική Εβδομάδα «Θεωρία Galois σε 30 λεπτά» Ελληνική Μαθηματική
COURBES EN POLAIRE. I - Définition
Y I - Définition COURBES EN POLAIRE On dit qu une courbe Γ admet l équation polaire ρ=f (θ), si et seulement si Γ est l ensemble des points M du plan tels que : OM= ρ u = f(θ) u(θ) Γ peut être considérée
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-#
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-# 4556 ''*."% 777777777777777777777777777777777777777777777777777 #8. (&9%,*.#:"%*)!"
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t
X 3 x 3 C Q y C(t) Q t QP t t C configuration initiale description lagrangienne x Φ ( X, t) X Y x X P x P t X x C(t) configuration actuelle description eulérienne (, ) d x v x t dt X 3 x 3 C(t) F( X, t)
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#
! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <
NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:
NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (
Ονομαστική Γενική Αιτιατική Κλητική Αρσ. γλ υκοί γλ υκών γλ υκούς γλ υκοί Θηλ. γλ υκές γλ υκών γλ υκές γλ υκές Ουδ. γλ υκά γλ υκών γλ υκά γλ υκά
Επίθετα και Μετοχές Nic o las Pe lic ioni de OLI V EI RA 1 Apresentação Modelo de declinação de adjetivos e particípios (επίθετα και μετοχές, em grego) apresentado pela universidade Thessaloniki. Só é
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση
TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE
TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE Conceptos preliminres Unh función é unh relción entre dús mgnitudes, de tl mneir que cd vlor d primeir lle sign un único vlor d segund. Se A e B son dous conuntos,
Une Théorie des Constructions Inductives
Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,
Βασιλική Σαμπάνη 2013. Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας
Βασιλική Σαμπάνη 2013 Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας 200 Διαγλωσσικές Θεωρήσεις μεταφρασεολογικός η-τόμος Interlingual Perspectives translation e-volume ΜΑΝΤΑΜ ΜΠΟΒΑΡΥ: ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP
Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP 2 1 ΠΛΑΙΣΙΟ ΓΙΑΤΙ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ErP? Αντιμετωπίζοντας την κλιματική αλλαγή, διασφαλίζοντας την ασφάλεια της παροχής ενέργειας2 και την αύξηση της ανταγωνιστικότητα
ΚΕ-ΓΛΩ-21 Αξιολόγηση δεξιοτήτων επικοινωνίας στις ξένες γλώσσες. KE-GLO-21 Évaluation des compétences de communication en langue étrangère
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΚΕ-ΓΛΩ-21 Αξιολόγηση δεξιοτήτων επικοινωνίας στις ξένες γλώσσες KE-GLO-21 Évaluation des compétences de communication en langue étrangère
Επιμέλεια: ρ. Ν. Σγούρος ρ. Ι. Κονταξάκης
Ε Εργαστήριο ή Α Αρχιτεκτονικής ή ΙΙ Εργαστήριο γ Ι: Βασικέςς γνώσεις γ ς Επιμέλεια: ρ. Ν. Σγούρος ρ. Ι. Κονταξάκης Στόχοι ομή συμβολικού προγράμματος 8086 Υλοποίηση Αλγοριθμικών δομών ( Επιλογή/Επανάληψη
Oxana Zaika ~ Τιµοκατάλογος
Oxana Zaika ~ Τιµοκατάλογος Artmajeur.com/aquachat Γαλλία SOLD PAINTINGS / VENDU 3 (169 Εικόνες) Εικόνα Τίτλος Κατάσταση Τιµή VENISE**** Ζωγραφική, 30x60 cm 2009 LES CHATS DE LA DUCHESSE Ζωγραφική, 35x27
M14/1/AYMGR/HP1/GRE/TZ0/XX
M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA
TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS
TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace
35-50 1969 ΑΝΘΕΜΙΟ ΜΕ ΛΟΥΛΟΥΔΙ
52. Ακροκέραμα 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1956 Ακροκέραμο γωνιακό παραθύρου νεοκλασικού αριστερό. Ύψος 20εκ. 240-280 1957 Ακροκέραμο μετωπικό παραθύρου νεοκλασικού.διαστ.
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
ΤΑ ΝΕΑ ΜΑΣ!!!! Ο Αγιασμός στην Αδαμάντιο Σχολή. Επίσκεψη των προνηπίων στο Κτήμα Γεροβασιλείου
ΣΕΠΤΕΜΒΡΙΟΣ 2013 Ο Αγιασμός στην Αδαμάντιο Σχολή Οι μικροί μαθητές κάτω από την Ευλογία και τη Χάρη της εκκλησίας στον Αγιασμό για την έναρξη της νέας σχολικής χρονιάς 2013 2014. Όμορφα πρόσωπα, χαρούμενα,
ΤΕΧΝΙΤΗΣ ΠΕΤΡΑΣ. Ήπειρος (Ελλάδα)
Ονοματεπώνυμο ΚΑΛΑΜΠΟΚΗΣ ΓΕΩΡΓΙΟΣ 1969 Μιχαλίτσι (Ήπειρος) Έτη δραστηριότητας ως τεχνίτης Δουλεύει από 15 ετών Ήπειρος (Ελλάδα) Οργανώνει το συνεργείο κατά περίπτωση Έμαθε την τέχνη από τον πατέρα και
ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΑ ΓΑΛΛΙΚΑ
ΤΑΞΗ Α ΓΥΜΝΑΣΙΟΥ (Τµήµα Α1 και Α2) Méthode : Action.fr-gr1, σελ. 8-105 (Ενότητες 0, 1, 2, 3 µε το λεξιλόγιο και τη γραµµατική που περιλαµβάνουν) Οι διάλογοι και οι ερωτήσεις κατανόησης (pages 26-27, 46-47,
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
REPÚBLICA DE ANGOLA EMBAIXADA DA REPÚBLICA DE ANGOLA NA GRÉCIA DIPLOMÁTICO OFICIAL ORDINÁRIO ΙΠΛΩΜΑΤΙΚΗ ΕΠΙΣΗΜΗ ΚΑΝΟΝΙΚΗ
REPÚBLICA DE ANGOLA EMBAIXADA DA REPÚBLICA DE ANGOLA NA GRÉCIA PEDIDO DE VISTO ΑΙΤΗΣΗ ΓΙΑ ΒΙΖΑ FOTO ΦΩΤΟΓΡΑΦΙΑ DIPLOMÁTICO OFICIAL ORDINÁRIO ΙΠΛΩΜΑΤΙΚΗ ΕΠΙΣΗΜΗ ΚΑΝΟΝΙΚΗ TRÂNSITO TRABALHO F. RESIDÊNCIA
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que