Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ
|
|
- Πολυδεύκης Ζυγομαλάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Μοντζλα ταθρών και τυχαίων πιδράων Κατιλζροσ Ανατάιοσ 08
2 Ανάλυη μοντζλου ταθρών πιδράων μ ζνα παράγοντα Αν ο ρυνθτισ πιλζγι να χρθιμοποιιι το πίραμα του κάποια υγκκριμζνα πίπδα νόσ παράγοντα και τα υμπράματα του πιράματοσ αφοροφν μόνο τα προκακοριμζνα αυτά πίπδα-πμβάισ, τότ το μοντζλο ίναι τακρών πιδράων (Fxed-effects model. Το γραμμικό μοντζλο ίναι: Y j = μ + τ + j Όπου μ ο γνικόσ μζοσ, τ θ πίδραθ τθσ πζμβαθσ (Στ = Σ(Ȳ μ = 0 και j τα πιραματικά φάλματα τα οποία ίναι τυχαία, ανξάρτθτα και Ν(0, e. Η μθδνικι υπόκθ: Η ναλλακτικι υπόκθ: H 0 : τ = τ = = τ H : τ τ τ Η διακφμανθ των παρατθριων Y j ίναι Όταν θ μθδνικι υπόκθ H 0 απορρίπτται, υπάρχι ζνα πιπλζον υτατικό τθσ διακφμανθσ το πίραμα : τ
3 (- (- α τ - αμ - α τ αμ (- τ (μ τ (μ (- (- (- (- (- (- (- ΑΤυπ (ΜΤυπ. j j. j j. j j j.. j j j.. j j. j j Η αναμνόμνθ τιμι του μζου ττραγώνου του υπολοίπου υπολογίηται ωσ ξισ: Οι όροι j και. αντικακίτανται μ και πιδι ( j =0
4 τ τ (- (μ τ μ ] [(μ ] τ [(μ τ E(μ τ E(μ E( ΑΤπ (ΜΤπ Ιχφι ( j =0, (. =0, (.. =0, ( j =, (. =, (.. = και Στ = 0 Η αναμνόμνθ τιμι του μζου ττραγώνου των πμβάων υπολογίηται ωσ ξισ:
5 Ανάλυη μοντζλου τυχαίων πιδράων μ ζνα παράγοντα Αν τα πίπδα τθσ πζμβαθσ ίναι ζνα τυχαίο δίγμα που προζρχται από ζνα πλθκυμό μ μζθ τιμι 0 και διακφμανθ τ και τα υμπράματα του πιράματοσ ζχουν ωσ τόχο να πκτακοφν τον πλθκυμό των πιπζδων τότ το μοντζλο ίναι τυχαίων πιδράων (Rdom-effects model. Το γραμμικό μοντζλο ίναι: Y j = μ + τ + j Όπου τ ίναι ανξάρτθτθ τυχαία μταβλθτι και για τυχαία δίγματα πιπζδων ιχφι Στ = Σ(Ȳ μ 0. Η μθδνικι υπόκθ: H 0 : τ = 0 Η ναλλακτικι υπόκθ: H : τ > 0 Η διακφμανθ των Y j = r τ + ( τ και τα υτατικά τθσ διακφμανθσ Όταν θ μθδνικι υπόκθ H 0 απορρίπτται, υπάρχι ζνα πιπλζον υτατικό τθσ διακφμανθσ το πίραμα : τ
6 τ τ τ τ τ τ.. j (- (- (μ μ ] [(μ ] [(μ τ E(μ τ E(μ E( ΑΤπ (ΜΤπ Η αναμνόμνθ τιμι του μζου ττραγώνου των πμβάων υπολογίηται ωσ ξισ: Ο όροσ τ αντικακίτανται μ τ πιδι (τ =0 και οι όροι. και.. μ και αντίτοιχα. Η αναμνόμνθ τιμι του μζου ττραγώνου του υπολοίπου ίναι.
7 Πίνακασ Ανάλυθσ Παραλλακτικότθτασ για το ντλώσ Τυχαιοποιθμζνο Σχζδιο Πηγή παρ/τητασ BE ΑΤ ΜΤ F ΘΣΜΤ ΘΣΜΤ πμβάισ AT Y. Y.. AT (α MT MTυ e τ τ Υπόλοιπο ( ATυ Y j Y. j ATυ α( e e Σφνολο AT Y j Y.. j Θωρθτικι φταθ μζου ττραγώνου: Μοντζλο τυχαίων πιδράων, Μοντζλο τακρών πιδράων
8 Ανάλυη μοντζλου ταθρών πιδράων μ δφο παράγοντσ Ο ρυνθτισ πιλζγι να χρθιμοποιιι υγκκριμζνα πίπδα των δφο παραγόντων και τα υμπράματα του πιράματοσ αφοροφν μόνο τα υγκκριμζνα πίπδα. Το γραμμικό μοντζλο ίναι: Υ jk = μ + α + β j + (αβ j + jk Όπου: μ = ο γνικόσ μζοσ α = θ πίδραθ του πιπζδου του πρώτου παράγοντα (Σα =0 β j = θ πίδραθ του j πιπζδου του δφτρου παράγοντα (Σβ j =0 (αβ j = θ αλλθλπίδραθ των δφο παραγόντων jk = τα πιραματικά φάλματα, Ν(0, Η διακφμανθ των παρατθριων Y jk ίναι Οι μθδνικζσ υποκζισ ίναι Η 0 : α = 0, Η 0 : β j = 0 και Η 0 : (αβ j = 0
9 - α b α b (- (bμ α b (bμ ] b [(bμ b ] b α (b [ bμ b E( bμ αb bτ (bμ E b b E( b b b ΑΤ (ΜΤ A A Η αναμνόμνθ τιμι του μζου ττραγώνου του παράγοντα Α υπολογίηται ωσ ξισ: Ιχφι α. = 0, β. = 0, (αβ.j = 0, (αβ. = 0 και (αβ.. = 0
10 Ανάλυη μοντζλου τυχαίων πιδράων μ δφο παράγοντσ Τα πίπδα των παραγόντων ίναι ζνα τυχαίο δίγμα που προζρχται από ζνα μγαλφτρο πλθκυμό και τα υμπράματα του πιράματοσ ζχουν ωσ τόχο να πκτακοφν τον μγαλφτρο πλθκυμό πιπζδων. Το γραμμικό μοντζλο ίναι: Υ jk = μ + α + β j + (αβ j + jk α = θ τυχαία πίδραθ από πλθκυμό μ μζθ τιμι 0 και διακφμανθ α β j = θ τυχαία πίδραθ από πλθκυμό μ μζθ τιμι 0 και διακφμανθ β (αβ j = ίναι θ τυχαία αλλθλπίδραθ από ζναν πλθκυμό μ μζθ τιμι 0 και διακφμανθ αβ jk = τα πιραματικά φάλματα, Ν(0, Η διακφμανθ των παρατθριων Y jk ίναι α + β + αβ + Οι μθδνικζσ υποκζισ ίναι Η 0 : α = 0, Η 0 : β = 0 και Η 0 : αβ = 0
11 α αβ α αβ αβ β α αβ β α A A b b ( ( (- ] b b b( (b [(bμ b ] b b b( (b [ bμ b αβ β bα E( bμ b αβ β bα (bμ E b b E( b b b ΑΤ (ΜΤ Η αναμνόμνθ τιμι του μζου ττραγώνου του παράγοντα Α υπολογίηται ωσ ξισ:
12 Ανάλυη μοντζλου μικτών πιδράων μ δφο παράγοντσ Αν τα πίπδα του νόσ παράγοντα ίναι προκακοριμζνα, νώ τα πίπδα του άλλου παράγοντα ίναι τυχαία που προζρχονται από ζνα μγαλφτρο πλθκυμό, τότ το μοντζλο αυτό ονομάηται μοντζλο μικτών πιδράων (Mxed-effects model. Το γραμμικό μοντζλο ίναι: Υ jk = μ + α + β j + (αβ j + jk Πριοριμζνο μοντζλο (restrcted model Όπου α θ τακρι πίδραθ (Σα =0, β j θ τυχαία πίδραθ μ Ν(0, β, (αβ j θ τυχαία αλλθλπίδραθ μ Ν(0, [(-/] αβ και (αβ.j = 0 και jk τα πιραματικά φάλματα μ Ν(0, Μη πριοριμζνο μοντζλο (urestrcted model Όπου α θ τακρι πίδραθ (Σα =0, β j θ τυχαία πίδραθ μ Ν(0, β, (αβ j θ τυχαία αλλθλπίδραθ μ Ν(0, αβ και jk τα φάλματα μ Ν(0,.
13 β β β β j b j... b j.j.... j.j. Β (b (b- b ] b (b bμ [ αb ] b b μ [b b β E( bμ b β (μ E b b E( b b b b b ΑΤ (ΜΤ Η αναμνόμνθ τιμι του μζου ττραγώνου του παράγοντα Β (τυχαίο, μ το πριοριμζνο μοντζλο, υπολογίηται ωσ ξισ: Ιχφι α. = 0 και (αβ.j = 0
14 Η αναμνόμνθ τιμι του μζου ττραγώνου του παράγοντα Β (τυχαίο, μ το μθ πριοριμζνο μοντζλο, υπολογίηται ωσ ξισ: (ΜΤ Ιχφι α. = 0 ΑΤΒ b b j.j.... b b b b E (μ β j αβ.j.j. j b E( bμ β. αβ..... b [bμ b β b αβ b ] b [ bμ b β b αβ b αb β β b (b- (b (b b j.j.... E( b β ] β
15 Πίνακασ Ανάλυθσ Παραλλακτικότθτασ Πηγή παρ/τητασ BE ΘΣΜΤ ΘΣΜΤ ΘΣΜΤ 3 Α b α e αβ b α αβ b α Β b b β e αβ β e β ΑΒ (-(b- b αβ j ((b j e αβ e αβ Υπόλοιπο b(- e e e Μοντζλο τακρών πιδράων, Μοντζλο τυχαίων πιδράων και 3 Μοντζλο μικτών πιδράων (Α προκακοριμζνο και Β τυχαίο
16 Παράδιγμα: Πίραμα δφο παραγόντων (Motgomer Prt Opertor Opertor Opertor
17 > lbrr(emsov > fctorlems A B Rep Y
18 > ft=emsov(y~a*b, dt=`fctorlems`, tpe=c("f","f" > ft Df SS MS Fvlue Pvlue Sg EMS A <0.000 *** Error+6A B Error+40B A:B Error+A:B Resduls Error > ft=emsov(y~a*b, dt=`fctorlems`, tpe=c("r", "R" > ft Df SS MS Fvlue Pvlue Sg EMS A <0.000 *** Error+A:B+6A B Error+A:B+40B A:B Error+A:B Resduls Error
19 > ft=emsov(y~a*b, dt=`fctorlems`, tpe=c("f", "R" > ft Df SS MS Fvlue Pvlue Sg EMS A <0.000 *** Error+A:B+6A B Error+40B A:B Error+A:B Resduls Error > ft=emsov(y~a*b,dt=`fctorlems`,tpe=c("r", F" > ft Df SS MS Fvlue Pvlue Sg EMS A <0.000 *** Error+6A B Error+A:B+40B A:B Error+A:B Resduls Error
20 > lbrr(lme4 > A=fctor(A;B=fctor(B > ft=lmer(y ~ A +( B + ( A:B,fctorlEMS > summr(ft Ler mxed model ft b REML ['lmermod'] Formul: Y ~ A + ( B + ( A:B REML crtero t covergece: 308 Scled resduls: M Q Med 3Q Mx Rdom effects: Groups Nme Vrce Std.Dev. A:B (Itercept B (Itercept Resdul Number of obs: 0, groups: A:B, 60; B, 3 Fxed effects: Estmte Std. Error t vlue (Itercept A A
21 > ov(ft Alss of Vrce Tble Df Sum Sq Me Sq F vlue A > lbrr(lmertest > rov(ft ANOVA-lke tble for rdom-effects: Sgle term deletos Model: Y ~ A + ( B + ( A:B pr loglk AIC LRT Df Pr(>Chsq <oe> ( B ( A:B
22 > dfflsmes(ft Lest Squres Mes tble: Estmte Std. Error df t vlue lower upper Pr(> t fctor(a-fctor(a -3.50e e e e e-09 *** fctor(a-fctor(a3-3.33e-0 5.4e e e fctor(a-fctor(a4-7.00e e e e+00 <.e-6 *** fctor(a-fctor(a5.33e e e-0.4e * fctor(a-fctor(a6 -.6e e e e *** fctor(a-fctor(a7 -.66e e e e ** fctor(a-fctor(a8.66e e e-0.74e ** fctor(a-fctor(a9-3.66e e e e+00.00e-09 *** fctor(a-fctor(a0-4.50e e e e e-3 *** fctor(a-fctor(a -.66e-0 5.4e e e fctor(a-fctor(a.83e e e-0.9e **...
23 > ft=lmer(y ~ B +( A + ( A:B > summr(ft Ler mxed model ft b REML ['lmermod'] Formul: Y ~ B + ( A + ( A:B REML crtero t covergece: Scled resduls: M Q Med 3Q Mx Rdom effects: Groups Nme Vrce Std.Dev. A:B (Itercept A (Itercept Resdul Number of obs: 0, groups: A:B, 60; A, 0 Fxed effects: Estmte Std. Error t vlue (Itercept B B Correlto of Fxed Effects: (Itr B B B
24 > ov(ft Alss of Vrce Tble Df Sum Sq Me Sq F vlue B ANOVA-lke tble for rdom-effects: Sgle term deletos > rov(ft Model: Y ~ B + ( A + ( A:B pr loglk AIC LRT Df Pr(>Chsq <oe> ( A <e-6 *** ( A:B Sgf. codes: 0 *** 0.00 ** 0.0 *
25 > ft= lmer(y ~ ( A +( B + ( A:B > summr(ft Ler mxed model ft b REML ['lmermod'] Formul: Y ~ ( A + ( B + ( A:B REML crtero t covergece: Scled resduls: M Q Med 3Q Mx Rdom effects: Groups Nme Vrce Std.Dev. A:B (Itercept A (Itercept B (Itercept Resdul Number of obs: 0, groups: A:B, 60; A, 0; B, 3 Fxed effects: Estmte Std. Error t vlue (Itercept
26 Παράγοντασ Fxed ι Rdom Αρικμόσ πιπζδων Δίκτθσ πίδραθσ Α F Β R b j Rep R k α 0 b αβ ΘΣΜΤ b α β j e β αβ j 0 (* e αβ jk e Τα κλιά τθσ τλυταίασ γραμμισ ( jk παίρνουν τθν τιμι. Αν τα κλιά ζχουν ίδιο δίκτθ γραμμι και τιλθ τότ, αν τα πίπδα του παράγοντα του δίκτθ ίναι προκακοριμζνα, το κλί παίρνι τιμι 0 (*το urestrcted-model, αν υπάρχι τουλάχιτον ζνασ τυχαίοσ παράγοντασ τθν αλλθλπίδραθ αβ j, τότ παίρνι τθν τιμι, αν τα πίπδα ίναι τυχαία, παίρνι τιμι, νώ αν δν ζχουν ίδιο δίκτθ το κλί παίρνι τoν αρικμό των πιπζδων τθσ τιλθσ. Για να βροφμ τθν κωρθτικι φταθ νόσ μζου ττραγώνου (πχ ΜΤ Α, ξαιροφμ τθν τιλθ μ τον δίκτθ τθσ πίδραθσ (πχ πρώτθ τιλθ και πολλαπλαιάηουμ τισ τιμζσ των κλιών μ τθν διακφμανθ, τισ γραμμζσ κίνσ όπου μφανίηται ο ίδιοσ δίκτθσ ( θ, 3 θ και 4 θ γραμμι. Παράδιγμα: b**σα /(- + ** β + **
27 Πηγή παρ/τασ ΘΣΜΤ ΘΣΜΤ ΘΣΜΤ 3 A bc α α e αβγ c αβ b αγ bc α b αγ bc α α B c β b e αβγ c αβ βγ c β σ σ βγ c β b Γ c b k c γ e αβγ b αγ βγ bc γ bc e γ AB c b j αβ ((b j e αβγ c αβ σ σ αβγ b c αβ j ( (b j ΑΓ b c k αγ ((c k e αβγ b αγ b - αγ ΒΓ b c βγ j k (b(c jk e αβγ βγ b b - βγ ΑΒΓ b c αβγ j k ((b(c jk e αβγ σ σ αβγ Υπόλοιπο Μοντζλο τακρών πιδράων, Μοντζλο τυχαίων πιδράων και 3 Μοντζλο μικτών πιδράων (Α, Β τακρών και Γ τυχαίων
28 Παράγοντασ Fxed ι Rdom Αρικμόσ πιπζδων Δίκτθσ πίδραθσ Α F α 0 b c β j 0 c γ k b Β F b j C R c k Rep R l σ σ bσ σ ΘΣΜΤ αγ βγ e bc α α c β b bc γ αβ j 0 (* 0 ( c αγ k 0 ( b βγ jk 0 ( σ σ αβγ b c αβ j ( (b b - σ σ βγ αγ j αβγ jk 0 ( 0 ( σ σ αβγ jkl *(urestrcted model
29 Παράδιγμα: Πίραμα τριών παραγόντων (Motgomer Gs Temperture (A Pressure Guge (C 60 F 75 F 90 F Opertor (B Opertor (B Opertor (B
30 > fctorl3ems A B C Rep Y
31 > fctorlems <- red.delm("c:/users/m/desktop/fctorl3ems.txt" > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c("f","f","f" > ft Df SS MS Fvlue Pvlue Sg EMS A <0.000 *** Error + 4A B ** Error + 8B A:B <0.000 *** Error + 6A:B C Error + 4C A:C Error + 8A:C B:C Error + 6B:C A:B:C Error + A:B:C Resduls Error
32 > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c("f","f","r" > ft Df SS MS Fvlue Pvlue Sg EMS A * Error + 8A:C + 4A B Error + 6B:C + 8B A:B e-04 *** Error + A:B:C + 6A:B C Error + 4C A:C Error + 8A:C B:C Error + 6B:C A:B:C Error + A:B:C Resduls Error
33 > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c("f","r","r" > ft Df SS MS Fvlue Pvlue Sg EMS A Error+A:B:C+8A:C+6A:B+4A B Error+6B:C+8B A:B e-04 *** Error+A:B:C+6A:B C Error+6B:C+4C A:C Error+A:B:C+8A:C B:C Error+6B:C A:B:C Error+A:B:C Resduls Error
34 Προγγιτική δοκιμαία F (Approxmte F tests MT' MT A MT'' MT MT AB Συνκτικό ΜΤ ABC MT AC 5,68 3,84 55,5 0,00 34,47 36,47 F MT' MT'' 55,5 36,47, MT MTA MTABC 55,5 / MT / 5,68 / 3,84 p A ABC Β αρικμθτι /, MT MTAB MTAC 36,47 /6 MT /4 0,00 /6 34,47 q AB AC Β παρανοματι /4 7,88 8 Συγκρίνοντασ το F =, του πιράματοσ μ τθν κρίιμθ τιμι F (0.05,,8 = 4,46, δν απορρίπτουμ τθν μθδνικι υπόκθ.
35 > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c("f","r","r", pproxmte = TRUE > ft Df SS MS Fvlue Pvlue Sg EMS A Error+A:B:C+8A:C+6A:B+4A B Error+6B:C+8B A:B e-04 *** Error+A:B:C+6A:B C Error+6B:C+4C A:C Error+A:B:C+8A:C B:C Error+6B:C A:B:C Error+A:B:C Resduls Error
36 > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c( R","R","R > ft Df SS MS Fvlue Pvlue Sg EMS A Error+A:B:C+8A:C+6A:B+4A B Error+A:B:C+6B:C+6A:B+8B A:B e-04 *** Error+A:B:C+6A:B C Error+A:B:C+6B:C+8A:C+4C A:C Error+A:B:C+8A:C B:C Error+A:B:C+6B:C A:B:C Error+A:B:C Resduls Error
37 > ft=emsov(y~a*b*c, dt=`fctorl3ems`, tpe=c( R","R","R", pproxmte = TRUE > ft Df SS MS Fvlue Pvlue Sg EMS A Error+A:B:C+8A:C+6A:B+4A B Error+A:B:C+6B:C+6A:B+8B A:B e-04 *** Error+A:B:C+6A:B C Error+A:B:C+6B:C+8A:C+4C A:C Error+A:B:C+8A:C B:C Error+A:B:C+6B:C A:B:C Error+A:B:C Resduls Error
Ανάλυςη Συνδιακφμανςησ (Analysis of covariance) Κατςιλζροσ Αναςτάςιοσ
Ανάλυςη Συνδιακφμανςησ (Alysis of covrice Κατςιλζροσ Αναςτάςιοσ 08 Ανάλυςη Συνδιακφμανςησ Σε πολλζσ περιπτϊςεισ δεν είναι δυνατόν ο ζλεγχόσ μιασ εξωγενοφσ πθγισ παραλλακτικότθτασ παρά τθν ομαδοποίθςθ.
Nested and split plot designs. Κατςιλζροσ Αναςτάςιοσ
Nested and split plot designs Κατςιλζροσ Αναςτάςιοσ 017 ΙΕΡΑΡΧΙΚΟΙ ΧΕΔΙΑΜΟΙ (nested design) Σε οριςμζνα παραγοντικά πειράματα, τα επίπεδα ενόσ παράγοντα (π.χ. Β) είναι παρόμοια αλλά όχι όμοια για τα διαφορετικά
Παραγοντικοί χεδιαςμοί. Κατςιλζροσ Αναςτάςιοσ
Παραγοντικοί χεδιαςμοί Κατςιλζροσ Αναςτάςιοσ 07 ΠΑΡΑΓΟΝΣΙΚΑ ΠΕΙΡΑΜΑΣΑ (factorial experiments) Ωσ παράγοντασ ορίηεται το είδοσ τθσ πειραματικισ επζμβαςθσ που εφαρμόηεται ςτο πείραμα και επίπεδο ο αρικμόσ
Γ. Πειραματισμός Βιομετρία
Γενικά Σκοπός των παραγοντικών πειραμάτων είναι η ταυτόχρονη μελέτη των επιδράσεων ενός αριθμού παραγόντων ώστε να προκύψει πληροφόρηση όχι μόνο για την αντίδραση του πειραματικού υλικού σε μεμονωμένους
Γεωργικός Πειραματισμός ΙΙ ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ
ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ Συχνά ςυμβαίνει ςτα πρϊτα ςτάδια ενόσ βελτιωτικοφ προγράμματοσ να μθν υπάρχει επαρκι ποςότθτα γενετικοφ υλικοφ των νζων ςειρϊν, γεγονόσ που δυςχεράνει τθν πραγματοποίθςθ πειραμάτων αξιολόγθςθσ
Εισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)
ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Σχεδίαση µε τη χρήση Η/Υ
Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδειγµα
Α.Τ.Ε.Ι ΠΑΤΡΩ & ΠΛΡΟΦΟΡΙΑΚΩ ΣΥΣΤΜΑΤΩ Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδιγµα Στο παρόν µάθηµα δίνται µ κάποια απλά παραδίγµατα-ασκήσις θέµατα πάνω στην κτίµηση νός πολλαπλού γραµµικού υποδίγµατος.
Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA
ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
1 ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ.ΣΙΡΚΑ 8 και ΑΝΣΤΠΑ 30100 ΑΓΡΙΝΙΟ Email: nakosk@sch.gr Σηλ 64105400 κι.69749695 ΜΕΓΙΣΑ-ΕΛΑΧΙΣΑ ΧΩΡΙ ΠΑΡΑΓΩΓΟΤ 3 ΕΙΣΑΓΩΓΗ Σα
ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ
ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε
Ασκήσεις βιολογίας. Καρυότυποσ-DNA. Φιρφιρισ Χριςτοσ ΦΡΟΝΣΙΣΗΡΙΑ ΠΡΟΟΠΣΙΚΗ 1
Παράδειγμα 1. Ο ανκρώπινοσ καρυότυποσ διακζτει 46 χρωμοςώματα και το ανκρώπινο γονιδίωμα 3x10 9 ηεφγθ βάςεων. Από τα παραπάνω βιοχθμικά δεδομζνα,τι μποροφμε να γνωρίηουμε για το γενετικό υλικό των ανκρωπίνων
1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm
HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624
Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11
ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ,
ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ, --0 Άσκηση. Τα παρακάτω δεδομένα προέρχονται από μετρήσεις του δείκτη του σακχάρου στο αίμα 0 ποντικών που εξετάσθηκαν: ) υπό κανονικές συνθήκες, ) μετά από ένεση ptre, ) μετά από ένεση
Σύγκριση Συνδυασµένων Παραγόντων
Σύγκριση Συνδυασµένων Παραγόντων Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Παραγοντικά Πειράµατα (Factorial Experiments)
ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011
Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W
Ασ αναλυςουμε μερικεσ εννοιεσ που προκαλουν ςυγχυςθ ςε μερικουσ από εμασ ι δεν είναι τοςο ςαφεισ. Για λογουσ ευκολιασ ςτθν αναλυςθ των εννοιων κανουμε τθν παραδοχθ ότι ενα Δικτυο μπορει να φιλοξενθςει
Funktionsdauer von Batterien in Abhängigkeit des verwendeten Materials und der Umgebungstemperatur
Beispiel: Funktionsdauer von Batterien in Abhängigkeit des verwendeten aterials und der Umgebungstemperatur emp. = 15 emp. = 70 emp. = 125 130 155 34 40 20 70 aterial 1 74 180 80 75 82 58 150 188 136 122
1. Να αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι τιλθ-ι. τιλθ-ιι Γενικοί μοριακοί τφποι. Ομόλογεσ ςειρζσ Α.
1 1. Να αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι τιλθ-ι τιλθ-ιι Γενικοί μοριακοί τφποι Ομόλογεσ ςειρζσ Α. C ν Η 2ν+2 1. Εςτζρεσ των κορεςμζνων μονοκαρβοξυλικϊν οξζων με τισ Β.
Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα
1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Εισαγωγή στην Γραμμική Παλινδρόμηση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Γ. Πειραματισμός Βιομετρία
ANOVA με δειγματοληψία Το Γραμμικό Πρότυπο = µ τ ε i ij δ όπου = το k-στό δείγμα της j-στής παρατήρησης της i-στής επέμβασης µ = ο μέσος όρος του πληθυσμού τ i = η επίδραση της i-στής επέμβασης ε ij =
Γ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Είναι πιθανώς το ευρύτερα χρησιμοποιούμενο και πλέον χρήσιμο πειραματικό σχέδιο Εκμεταλλεύεται την συγκέντρωση των επεμβάσεων σε ομάδες. Κάθε ομάδα (που ονομάζεται και επανάληψη)
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;
Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ
Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.
1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον
ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα
ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ
Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016
Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016 Πρόβλημα 1. Σε μια μελέτη συγκεντρώθηκαν δεδομένα σχετικά με το μέγεθος του πληθυσμού (σε ζεύγη πτηνών) ενός είδους
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική
Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος
4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ
1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή
Πλήρεις Οµάδες σε Ελεύθερη ιάταξη
Πλήρεις Οµάδες σε Ελεύθερη ιάταξη ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Πλήρεις Οµάδες σε Ελεύθερη ιάταξη (Randomized Complete-block Design- RCBD) Παράδειγµα
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Αςφάλεια και Προςταςία Δεδομζνων
Αςφάλεια και Προςταςία Δεδομζνων Κρυπτογράφθςθ υμμετρικι και Αςφμμετρθ Κρυπτογραφία Αλγόρικμοι El Gamal Diffie - Hellman Σςιρόπουλοσ Γεώργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 υμμετρικι Κρυπτογραφία υμμετρικι (Κλαςικι)
Λογιστική Παλινδρόµηση
Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών
HY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Κανονικζσ Μορφζσ Οριςμόσ των Δυαδικών Διαγραμμάτων Αποφάςεων (Binary Decision Diagrams BDDs) Αναπαράςταςθ
ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)
ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ
7. Ανάλυση Διασποράς-ANOVA
7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Αλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι
Αςφάλεια και Προςταςία Δεδομζνων
Αςφάλεια και Προςταςία Δεδομζνων Μοντζλα Αςφάλειασ Σςιρόπουλοσ Γεϊργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 Μοντζλα Αςφάλειασ Οι μθχανιςμοί που είναι απαραίτθτοι για τθν επιβολι μιασ πολιτικισ αςφάλειασ ςυμμορφϊνονται
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Συσχέτιση επιδόσεων οδικής ασφάλειας με δείκτες υγείας και οικονομίας στην Ευρωπαϊκή Ένωση της Μυρτώς Δαμιανού Αθήνα,
Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις
Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Ανάλυση Διακύμανσης. Ι. Κ. Δημητρίου
Ανάλυση Διακύμανσης Ι. Κ. Δημητρίου Να κάνετε πολλά παραδείγματα και για να κατανοήσετε την Ανάλυση Διακύμανσης (ΑΝΑΔΙΑ) ή Analysis of Variance (ANOVA). Ακόμη, να κοιτάξετε περιπτώσεις εφαρμογής. 3 Εισαγωγή
lim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
Έλεγχος υποθέσεων ΙI ANOVA
Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.
C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.
. Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν
Δοκιμές προτίμησης και αποδοχής
Δοκιμές προτίμησης και αποδοχής Χρησιμοποιείται συνήθως για: Επιλογή άριστου δείγματος ή άριστης επεξεργασίας Συγκριτική αξιολόγηση ποιοτικών χαρακτηριστικών Συγκριτική προτίμηση ομοειδών τροφίμων (διερεύνηση
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
Β ΓΥΜΝΑΣΙΟΥ. Δίνονται οι δεκαδικοί περιοδικοί αριθμοί α = 0, 2 και β = 0, 3.. (α) Να γράψετε τους αριθμούς α και β σε κλασματική μορφή. (β) Να βρείτε την τιμή της παράστασης 2015 2 2 ( 3 5 ) ( 18 ) 2016
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Γεωμετρία Α Λυκείου. Λεξιλόγιο Γεωμετρίας. Φροντιςτιριο Μ.Ε. «ΑΙΧΜΗ» Επιμζλεια Κων/νοσ Παπαςταματίου Μακθματικόσ
Γωμτρία Λυκίου Λξιλόγιο Γωμτρίας Φροντιςτιριο Μ.Ε. «ΙΧΜΗ» Κ. Καρτάλθ 28 (μ Δθμθτριάδοσ) όλοσ τθλ. 2421302598 Επιμζλια Κων/νοσ Παπαςταματίου Μακθματικόσ Γωμτρία Λυκίου Λξιλόγιο Γωμτρίασ Λυκίου Ευκίσ Ευκφγραμμα
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ 2 ο. Α. 1. Θεωρία σχολικό βιβλίο σελ Θεωρία σχολικό βιβλίο σελ. 61
ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 5 / / 0 ΘΕΜΑ ο Α Θωρία σχολικό βιβλίο σλ 7 Θωρία σχολικό βιβλίο σλ 6 Β Λ, Σ, Λ, 4 Λ, 5 Λ, 6 Λ, 7 Λ, 8 Σ, 9 Λ, 0 Σ Γ Β,, Α, 4 Α, 5 Α ΘΕΜΑ ο A λ, µ Β µ, λ 6 α xa
Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α
3 Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= ΟΑ Αν Δ και Ε είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα, να βρείτε τα διανύσματα ΓΑ, ΑΒ και ΕΔ συναρτήσει των α και γ και να αποδείξετε ότι ΓΑ = ΕΔ ΛΥΣΗ Έχουμε:
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Δείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
ΘΕΜΑ 4 Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που
Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που είναι στερεωμένα με έντεκα καρφιά (Α, Β, Γ, Δ, Θ, Ε, Μ, Η, Κ, Λ,