Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods
|
|
- Οὐλίξης Αλεξιάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006, pp { oh l om oh m -74 ne e (006 9o p r, 006 9o 3p }ˆ) Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods Kwang Soon Lee Depart. of Chem. and Biomol. Engng., Sogang Univ.,, Shinsoo-dong, Mapo-gu, Seoul -74, Korea (Received September 006; accepted 3 September 006) k o lp r lp l r p v 0l m rl tep rl(apc) p p nr l p v p l. pl l t p s rl APC p pp kv p lvv k p. p p rp rrp o p q p p re v l q po p p. p rr p p APC p drl(ilc)l l r APC l pl p. l p p k er rl rn l nrp p, ILC p p r APC l p p e. h Abstract The operability and productivity of continuous processes, especially in petrochemical industries have made remarkable improvement during the past twenty years through advanced process control (APC) typified by model-based predictive control. On the other hand, APC have not been actively practiced in industrial batch processes typified by batch polymerization reactors. Perhaps the main cause for this has been the lack of reliable batch process APC techniques that can overcome the unique problems in industrial batch processes. Recently, some noteworthy progress is being made in this area. New high-performance batch process control techniques that can accommodate and also overcome the unique problems of industrial batch processes have been proposed on the basis of iterative learning control (ILC). In this review paper, recent advancement in the batch process APC techniques are presented, with a particular focus on the variations of the so called Q-ILC method, with the hope that they are widely practiced in different industrial batch processes and enhance their operations. Key words: Batch Process, Advanced Process Control, Iterative Learning Control. m rl(mpc, model-based predictive control) tep l rp rl v 0l krp r mp, p o ro rp trl p e q qk [, ]. pl p r q p p v rp n e MPC pp. pl l rp rl k rp n l pl. l l l po p. n r To whom correspondence should be addressed. kslee@sogang.ac.kr l o p sr p p s q v p p l t pp v o l r~l v tp lr v kp, kr e p s r p vp n rl p pp p o k rp opp qn p. e rp l rp l r l n p p pl rl ql ke n pp v l r p. rp enrp r rl p o drl(ilc, iterative learning control) p p r l mp, l rl rp pn 45
2 46 p p p. l rp l rl p ILC p p rl p n pnl rp q m.. om Š rlp rl rp l r n l p. p p rl l opp p p enrp r rl p qp lr p. rp q t, r, ~, q, pk,, e k ll k ˆ pn pv, r lp rl l ~ l r p p ˆ. () l rp rl r n p o regulation r tlvv, rp rl r tracking r tlv. p rp tracking rl regulation p rp r l l servo p l. () rl p ˆ. p p rp r~l ~ r ˆl nr l ˆ p. l r rq~ rpv r r ˆ t l nr l p. rp p o p nrp v l p. p p rl e p r p l l. (3) rp rp r. rp p nr p erl vp k p. l r l r r ep p s r p rp l., sr p vrl ee l p vrp. (4) rp sq m rl p e l p. m l p p n er n sq p r k n r rl. (5) p rp v p ˆl nr l r p ee l n p op n v k. (6) rp pr ol p p rp r nrp. rl r p r pl l s erp r p n p pr v kp p. rp rl p ol p n p p plk. p p l m p r q e p p. k rl p rll p l m v m v l l er l l sp p pv v l l. 3. PIDoh i m oh q p r p l rl m p PID rl pn rl rp rl p. rp p e l v l p l rl spp o44 o k v k rr rl p lp l n. er l~ t p p n, rl r q v kk r l rl p r n. Fig. p er t p l p m rl p p l p p. rl spp r l pv k k relay rl } q p. l t n p n t (ultimate period) p p. p p p t p p p p l n p p. p v p l p t m p p PIDrl sp p e l d u, Fig. m p rl lp pl. Fig., p p l m p r p rp l l qv k n rl p r l p lp p. v kp n, rl p l l. rl rlm v p r o qp r pr p ov pv k n rp rlm lk l. Fig. 3 p r ramp n rlm p l. er t p l r p p p m d er Œp l pp eq Fig.. Variation of the period of reactor temperature oscillation in an industrial polymerization reactor. Fig.. Improvement of temperature control in Fig. by sche-duling of PID parameters.
3 drl p rp rl 47 PID rl p r pr p ov r m n p l q rlm lk t p ppp q k r p. p r e p r o l r r p k n l. p e l r qp Fig. 3. By feedback-only action, PID control necessarily results in lagged response to ramp reference trajectory. erl p m rlp. rl pn n, rlm v erl pp p rp eq l pp, p erl p rl qp p p p m dp l n n. p r kp rlm v rl rl qp p. p rl q p p llv p p k, l t plk. p o e o r r p k p n. m l p e rp rp p t ut () R I ek ( ) ut () ut ( ) + R I et ( ) k 0. p qp rlm e(t) 0p k p kpp p lk o l u(t) v p eˆ p. R I l rlm e(t) 0p u(t) l pr p, k t v ˆ. p o R I r l p r ˆ n l. pr k rp pr k nr, r k r rp p Ž p tlv, n p Ž p p p dl r rl ()e p p f q rlm lk pp p. p p ep ˆ o l p p N er p, k w l p p, r rp p p rp q. () yt () Fut ( ()) () u k [ u k ( 0) T u k ( ) T u k ( N ) T ] T m p tlv r r(t)l r(t) y(t)p pn l u(t) p p e o e n p. rp ep m p l e p o e l p dv k rrp p. 4. om ooh i ol l rrl l rl p p / o rl p rl pn e t v l m. p e t p [3-6], p [7-0], r [-4], v r [5, 6], RTPm p ~ q [7-9] k rl e l m. p r l rl p p p r l ps, e p r p l o l np v l ll p p p. rp rn p n rp, o p p r p v n p p r k n p qœp lk. 5. ohm 5-. lm n oh q p rp rrl p m sq l l rl p p p. l l p p rln seˆ p l p p l l. p p po r rl p l p. y k [ y k ( ) T y k ( ) T y k ( N) T ] T r [ r ( )T r ( ) T rn ( ) T ] T p dl r rl k u k H ( r y k ) u k u k + He k n 0, p r rlm p po p H l e k 0p v k p. p p o l H r l l r n l. Fig. 4l o r qp rl p m. r rp Ž p pr, p Ž p n p op l H rr ˆ p l Fig. 4. Batch-wise integral control can completely remove the tracking error despite nontrivial model error. (3) (4) Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006
4 48 p rlm tl mr rrl p p p. p rl k- p nr pn l k l n rlp e s v, pr l p n r dp rle rp l drl(ilc; iterative learning control) n p. u k k w p o e n p. ILC r p m l lim e k 0 seˆ r k o e pr p nr pn l rl p p. 5-. ohm i ILCl p p 35 r Garden[]l p kl pp, p Millerm Mallick[], Uchiyama [3]l p pn p. 984 Arimoto [4]l p s v qq p pv v ml. Arimoto p Žp o rp r s o l o D- ILC p rk m. p ILC rl l e p e k v, r l ps v k k v k v p k ˆ p rk l. l l ps v k k v rlm 0p o rl p p pr s p se k. p tlv n p s p seˆ p p d pp k rl l p k vp p p., p ILC SISO(single-input single-output) rp p mp l MIMO(multiple-input multiple-output) q l. p p p MIMO rl p rp e k 0p seˆ p ILC p rl e k minimum r lk. ILC r r k vp l l mp, n p s prp p r k v p l mp, p p u k u k +H e k H N e k N (5) k vp rk m [5]. r r rl k vp prp tv v, r rl qpp pp, r ILC k vp p p k v m [6]. ol ILC ee rl p l l pp, k nrp v k, rp n l p v open-loop ˆl p. p rrp m o l ee rl p l p rk m. p rp ee rl p ILCl ILC p r v p m p. ILC p r kl rk p pn le kl q. pnl HDDm p pr r r, qlp q l p pnp p lv pv, v k 0,, ~, q kp s rl pnp v p. Ahn [7]l p s ILC l l o44 o k p p p p. p rl rl p ILC p rp, k ILC t p e MIMO r ILC p p en p v prototype k v p. 6. ILCi ok oh 6-. om rp e rp v tlv r r t l nr nl p e (time-varying) rp p. rp l pv ILC m np pp p p l r m r v k. pr p p N erp p p p p e ˆ ep p. xt ( + ) At ()xt + Bt ()ut () + Kt ()vt () yt () Ct ()xt () + vt ()t, 0,,, N l v(t) rl op n rqpp op r p p innovationp p, rp zeromean,, erl p e p. kl p v(t) p v r pv kp p. (3)e p r l p e rp (6)ep p e pp y k Gu k d k l G g, g, 0 g, g N, 0 g N, g NN, g n,m C(n)A(n-)...A(m+)B(m) (8) p, d k x(0), v(τ), 0 τ Np n e p. d k kl rp zero-mean e dˆ m d k p p p. d k dˆ + d k l d k p p qp np r r d k d k + n (6) (7) (9) (0) pr y k Gu k + d k, e k r y k, e k r y k rp, km k-l p (7)ep l r p p pp rpep l.
5 drl p rp rl 49 e k e k G u k + n e k + dˆ e k () l u k u k u k- p p. o l s p Lee [8]l q l p. 6-. Q-ILC ee rl l ILC r e k-, e k-,... u k r p. p p p p r l p r p. min -- { + u k R } e kk u Q k () l x Q x T Qx, k- vp nrr l l e kk lp e k p rm p p p Kalman el p p tlv. u k e kk e k k G u k e kk e kk + K( e k e kk ) (3) Fig. 5. Comparison of tracking performance of I-ILC and Q-ILC. rks p l n, ()ep p p tlv. u k He k k ( G T QG + R) G T Qe k k (4) p k vp Q-ILC(quadratic criterion-based ILC) Lee [8]l p rk p. Q-ILC sp ILCp rrp rp p p rp, enrp p prp v p. sp l l ILC u k e eˆ, p p nonsquare MIMO rl rn l p r p. r l rks p p n, (4)em p pep tlvv kv QP(quadatic programming) r l rp e p v. Q-ILC r G 00Í m v v rlm p eˆ p p p v. Fig. 5l SISO rl Q-ILCp p l l ILCm l m. l er r Q-ILC o r p G p () s 0.8 ( s+ ) ( 3s + ) G s., () m ( s+ ) ( s + ) (5) p t p r r m. r l qpp p p r m oh m Q-ILC ee rl(rfc, real-time feedback control) p l l p. ee rl p k l p p. l r RFCm ILC p el k vp. p k vp rp u k () t u k () t + H e k ( :t) + H e k ( :N)+ (6) p s. l H e k (:t) p RFCl, v p ILCl. pm p rl ep l l q ep (6)ep u k (t) p e k (t) ˆ ep eˆ p. p p p llv k r l p RFC ILC llv. pr r (6)ep el v(t) kl v p p qpp p dl r rp r. v k () t v k () t + nt () v k () t v k () t + vˆ () t l n(t)m vˆ (7) (t) rp qpp. pm p v(t)p l (6)ep n(t)m vˆ (t)p m p p l p. x k ( t+ ) At ()x k () t + B() u t k () t + Kt ()nt () y k () t y k () t + C()x t k () t + nt () xˆ k ( t+ ) At ()xˆ k () t + Kt ()vˆ () t ŷ k () t Ct ()xˆ k () t + vˆ () t y k () t y k () t + ŷ k () t (8) (9) (0) (8)ep ˆ ep o x k () t l y k ( ) p... y k ( N) q n ˆ rp lk. p n ˆp v y k () t y k ( t t) p y k k () t ˆ ep. p p, (8)e~(0)ep l p e k (t) p ˆ ep p. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006
6 430 p x k ( t+ ) xˆ k ( t+ ) At () 0 0 A() t + Kt () 0 0 K() t x k () t xˆ k () t nt () vˆ () t + Bt () 0 pep p p p rp q. u k () t e k () t e k ( tt) [ C() t Ct ()] x k() t n() t vˆ () t xˆ k () t z k ( t+ ) Φ()z t k () t + Γt () u k () t + Kt ()wt () ζ k () t e k () t e k ( tt) ()z t k () t + mt () () () pr RFC k vp r l k llv p. r p p LQG r p p. min --E u k N t 0 e k () t Q + u k () t R ζ k () t e k ( tt) + Q (3) u k (t) rlm p r p p d p r rl, v, ILC qp o p. e p r o l ˆ ()e u k (t) p p r p. (3)e rl r t LQG rrl r u k (t)p p l l p q re l p. p rl k vp Lee [9]p re mp BLQG(batch LQG) m. r l rks p p n LQG p l ov p p p MPC r p v. min -- u k p k Subject to linear constraints on process variables + (4) (4)el m p m e k (t+k t) o m ()ep pn l. rks p p n, (4)ep QP l rp llv. ˆ ep ˆ o mv (4)el p ILC rl Lee [30]p BMPC (batch MPC) m. l QILC, BLQG, BMPC r l ILC p Q-ILC l. p nl e k () t ζ k () t + e k ( tt) min p seˆ u k (t) ()ep el l rl RFC ILC m rrlm vrlp er r nrl q 3, 4 p vp n tn r qn. t p l v m rl p Q-ILC kl re k v p n p. o44 o k u k () t R e k ( t+ k t) Q + u k ( t+ k ) R ζ k ( t+ k t) e k ( t+ k t+ k) + u k ( t+ k ) R + Q s r p vrl, nr t o p Œp n sq p, n r k k vl lk. r s r p vp v m p, p m p er vp r m l v rlp p p. p v m ep lp p m o v p rlp p r. ()el sr p vp ζ k (t)p n t rp q. p vp q erp ˆ z k (t)m er p v p u k (τ), t τ N p p p }k ()ep e p r lk. el BLQG BMPC rr k vp rn s vrl el Q-ILC. nr t r p s m p p n q pv, e e ˆ p. Chin [3]p Q-ILC ol l r p d p p v ppp mp rp p p el m. p l p p p rn ml pn p ILCm RFCp rp ()ep, kl RFC k v (6)p p rp u k u k + H e k + H e k (5) m p p. p k vp RFCm ILC el v, v p v p. ILC u k r p o r rl p eˆ l qp v, ee l m kp n p e k l op u k rp l p r. p ILC k l np p e rp k. p rrp o l Chin [3]p p u k ILC o u k m RFC o û k u k u k + û k m p l p rp, p p l u k k vp rk TBC(Two-stage Batch Control) m. pm p p p l ()ep e k e k G u k + n + dˆ e k e k Gû k (6) m p. l u k p dˆ p m p v kp re p pn l u k H e k p, û k H e k u k (7) (8) m p ee n dˆ p m p. p ee n p m p v k p f ILCp r u k
7 l pˆ v k. p u k u k + û k lr rl r n. e p p k k vp p. e k vr r lp e k Kalman l r. 7. Q-ILC mk i 7-. m m j pžsoh Chin [3]l p p, p l p drl p rp rl 43 A+B C B+C D (9) pp v p. p nr p n Fig. 6l p. A l Œp 30 l B l rp Œp, 00 C o k(4 mol) p nrp rp. p rl Ap 0 p r p p Cp s p r n. Cp p s. rl p q m m B Œp p sq pp, p p m o rl ove ˆ el C p l p eˆ p rk. p rl v m rlm m r rl el BMPC q l l. Fig. 7, 8l rl me m. porp m p mp l v m r C p q r p p. p vrll Only Tracking Control p m rl p (q m sql p ) np, Only Inferential Control p v r p pn l ee rl Nominal Case inferential control s l p o rl(ilc) p. BMPC pn p p m rrl Žp p l e p l p v l [30]. 7-. RTPi lmœ j m oh RTP(rapid thermal processor) op p p n l ~ rp op annealing,, v k rp n q p. op l p p tungsten-halogen lamp p Fig. 6. Operation scenario of the semi-batch reactor example. Fig. 7. Batch-wise improvement of temperature profile of the semi-batch reactor example under BMPC with model uncertainty. Fig. 8. Batch-wise improvement of the production of C under BMPC with model uncertainty. Nominal case means measurement feedback at the end of each batch plus real-time inferential control. n l l, p op m p p ov rp s k. l l np Cho [33]l p p. Fig. 9 p 40 p Kw lamp v 8p op n RTP l e p mp, lamp p 0 grouping l s q n m. op l 8 p lr l p m rl m. rl ILCm RFCp p TBC n mp, TBC 8 0 rp r l p. Fig. 0l p 8r m p rrl p l l v lt p. Fig. p rp p r p m rp (y(t) T(t)) r l l TBC rn nm p o rn l r p r m p 4dp rp l(y(t)t 4 (t)) r p TBC, rn np p. p l p m p p Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006
8 43 p Fig.. Performance comparison between T model-based TBC and T4 model-based TBC. Fig. 9. Thermocouple locations and the grouping of tungsten-halogen lamps for MV use. Fig. 0. Progressive improvement of tracking control performance of wafer temperatures under TBC. o44 o k p p. Fig. 0 l temperature difference, temperature gapp 8vr rm pl q m. p rl p lp q l rn l n p. 8. oh e rp r ILCm p p rl p l ˆ p. ql p p. s np Leem Lee[6, 34]p D oh -D(-dimensional) rl -D p rl p. -D edšp ˆ rp p p d p pl. rp e p d p p ˆ rp p lv -D edšp m. rp e p d o l q l p -D edš s p v p. l, -D rl r rl np. q v -D edš rl l l m p k v o mlp p p v t l l m [35-38]. 8-. Run-to-run oh Run-to-run(RTR) rl r rp ~ rl p n l m rl p. RTRp e ILCp p, rp p n ( p ) l rr rp n, rp p e p k p nl ILC p. ~ rp n ee l op p ˆ r p n l l, nrs (p )p reˆ p ˆ ( ) r l RTR nrs p p p [6, 34, 39, 40]. RTR rl e rp r EVOP[4], batch-to-batch r [4, 43] vrp p p.
9 8-3. oh rp rp k l rp r rp pr t rp p. rl(rc, repetitive control)p pr t p nr l p t p rlp p p ILCm rp o, ILCp qrp p [44]. ILCm rp rp l rp ˆ eqrl reset r, pr t p ˆ p t p ˆl m p pr p k p. rp liftingp p p. Predictive Control Technology, Control Eng. Practice,, (003). 3. Song, I. and Rhee, H., Nonlinear Control of Polymerization Reactor by Wienr Predictive Controller based on One-Step Subspace Identification, Ind. Eng. Chem. Res., 43, (004). 4. Rantow, F. S., Soroush, M. and Grady, M. C., Optimal Control of a High-Temperature Semi-Batch Solution Polymerization Reactor, Proceedings of the 005ACC, Portland, USA, 30, June(005). 5. Sheibat-Othman, N. and Othman, S., Control of Emulsion Polymerization Reactor, Ind. Eng. Chem. Res., 45, 06-(006). 6. Cetinkaya, S., Zeybek, Z., Hapoglu, H. and Alpbaz, M., Optimal Temperature Control in a Batch Polymerization Reactor Using Fuzzy-Relational Models-Dynamics Matrix Control, Comp. Chem. Eng., 30, 35-33(006). 7. Hua, X., Rohani, S. and Jutan, A., Cascae Closed-Loop Optimization and Control of Batch Reactors, Chem. Eng. Sci., 59, (004). 8. Arpornwichanop, A., Kittisupakorn, P. and Mujtaba, I. M., Online Dynamic Optimization and Control Strategy for Improving the Performance of Batch Reactors, Chem. Eng. and Processing, 4, 0-4(005). 9. Bouhenchir, H., Cabassud, M. and Le Lann, M. V., Predictive Functional Control for the Temperature Control of a Chemical Batch Reactor, Comp. Chem. Eng., 30, 4-54(006). 0. Pieri, F., Caccavale, F., Iamarino, M. and Tufano, V., A Controller-Observer Scheme for Adaptive Control of Chemical batch Reactors, Proceedings of the 006 ACC, Minneapolis, USA, 554, June(006).. Ma, D. L, Tafti, L. KU and Braatz, R. D., Optimal Control and Simulation of Multidimensional Crystallization Processes, Comp. Chem. Eng., 6, 03-6(00).. Caliane, B. B. Costa, Aline C. da Costa and Rubens Maciel Filho, Mathematical Modeling and Optimal Control Strategy Development for an Adipic Acid Crystallization Process, Chem. Eng. and Processing, 44, (005). 3. Voller, U. and Raisch, J., Control of Batch Crystallization-A System Inversion Approach, Chem. Eng. and Processing, 45, (006). 4. Costa, C. B. B., da Costa, A. C. and Filho, R. M., Evaluation of Optimisation Techniques and Control Variable Formulations for a Batch Cooling Crystallization Process, Chem. Eng. Sci., 60, 53-53(005). 5. Vu, T. T. L., Durham, R. J., Hourigan, J. A. and Sleigh, R. W., Dynamic Modelling Optimization and Control of latose Crystallizations: Comparison of Process Alternatives, Sep. and Purif. Technology, 48, 59-66(006). 6. Ronia M. Oisiovici* and Sandra L. Cruz, Inferential Control of High-Purity Multicomponent Batch Distillation Columns using an Extnded Kalman Filter, Ind. Eng., Chem. Res., 40, (00). 7. Ulas, S., Diwekar, U. M. and Stadtherr, M. A., Uncertainties in Parameter Estimation and Optimal Control in Batch Distillation, Comp. Chem. Eng., 9, (005). 8. Da, L., Kumar, V. G., Tay, A., Al Mamun, A., Weng Khuen Ho, See, A. and Chan, L., Run-to-run Process Control for Chemical Mechanical Polishing in Semiconductor Manufacturing, Proceedx k + ( 0) Ax k ( 0) + Pu k y k x k ( 0) + Gu k + d k drl p rp rl 433 (30) e l ˆ reset (x k (0)0), p p (7)e p v. RC p l (3), (4)e p r l rl. Lee [45]p MPC r l p RC rk p RMPC(Repetitive MPC) m. 9. rp rl p lp p rl p pp, o rl el rl p p. rp r r p l p dv k l, r rp o rl p rrs p seˆ l r v p. ILC p rrp rp p p, v l ~ ILC p rp rl p krp rp m. p rl p r p rrp n, l rn MPCp qrp rl pl t pn m l. l ILC p rrl p rp, enrp p v p s m. l r v r rl l p lp p p p n l kv v rr rl p re l pv kk pnp n r rp pl p ep. ILC p rl p rrlp n qp ll p. p q r l r R vop p pl. y. Morari, M. and Lee, J. H., Model Predictive Control: Past, Present, and Future, Comp. and Chem. Eng., 3(4-5), (996).. Qin, S. J. and Badgwell, T. A., A Survey of Industrial Model Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006
10 434 p ings of the 00 IEEE Int. Sym. on Intelligent Control, , Vancouver, Canada(00). 9. Emami-Naeini, A., Ebert, J. L., Kosut, R. L., de Roover, D. and Ghosal, S., Model-based Control for Semiconductor and Advanced Materials Processing: an Overview, Proceedings of the 004ACC, 5, , Boston, USA(004). 0. Matsumoto, K., Suzuki, K., Kunimatsu, S. and Fujii, T., Temperature Control of Wafer in Semiconductor Manufacturing Systems by MR-ILQ Design Method, Proceedings of 004 IEEE Int. Conf. on Control Appl.,, 40-44, Taipei, Taiwan(004).. Garden, M., Learning Control of Actuators in Control System, UUSU Patent No. 3,555,5(97).. Miller, R. C. and Jr. Mallick, G. T., Method of Controlling an Automatic Machine Tool, U.S. Patent No. 4,088,899(978). 3. Uchiyama, M., Formation of High Speed Motion Pattern of Mechanical Arm by Trial, Trans. of the Society of Instrum. and Control Eng., 9, 706-7(978). 4. Arimoto, S., Kawamura, S. and Miyazaki, F., Bettering Operation of Robotics by Learning, J. of Robotic Systems, (), 3-40(984). 5. Bien, Z. and Huh, K. M., Higher-Order Iterative Learning Control Algorithm, IEE Proc. Part D on Control Theory and Appl., 36, 05-(989). 6. Lee, K. S. and Lee, J. H., Iterative Learning Control-based Batch Process Control Technique for Integrated Control of End Product Properties and Transient Profiles of Process Variables, J. Process Control, 3(7), 607-6(003). 7. Ahn, H., Chen, Y. and Moore, K., Iterative Learning Control: Brief Syrvey and Catgorization , IEEE Trans. Systems, Man and Cybernetics-Part C: Applications and Reviews, Accepted for Publication(006). 8. Lee, J. H., Lee, K. S. and Kim, W. C., Model-based Iterative Learning Control with a Quadratic Criterion for Time-varying Linear Systems, Automatica, 36(5), (000). 9. Lee, K. S., Lee, J., Chin, I. and Lee, J. H., Control of Wafer Temperature Uniformity in Rapid Thermal Processing Using an Optimal Iterative Learning Control Technique, Ind. Eng. Chem. Res., 40(7), 66-67(00). 30. Lee, K. S., Lee, J. H., Chin, I. and Lee, H. J., A Model Predictive Control Technique Combined with Iterative Learning for Batch Processes, AIChE J., 45(0), 75-87(999). 3. Chin, I. S., Lee, K. S. and Lee, J. H., A Technique for Integrated Quality Control, Profile Control, and Constraint Handling for Batch Processes, Ind. Eng. Chem. Res., 39(3), (000). 3. Chin, I., Qin, S. J., Lee, K. S. and Cho, M., A Two-Stage ILC Technique Combined with Real-Time Feedback for Independent Disturbance Rejection, Automatica, 40(), 93-90(004). 33. Cho, M., Lee, Y., Joo, S. and Lee, K. S., Semi-empirical Modelbased Multivariable Iterative Learning Control of an RTP System, IEEE Trans. On Semicon. Manuf., 8(3), (005). 34. Lee, J. H. and Lee, K. S., Iterative Learning Control Applied to Batch Processes: An Overview, accepted for publication in Control Eng. Practice(006). 35. Roesser, R., A Discrete State Space Model for Linear Image Processing, IEEE Trans. A.C., 0, -0(975). 36. Kaczorek, T., Two-Dimensional Linear Systems, Springer-Verlag, Berlin(985). 37. Kurek, J. E. and Zaremba, M. B., Iterative Learning Control Synthesis based on -D System Theory, IEEE Trans. A.C., 38, -5(993). 38. Shi, J., Gao, F. and Wu, T-J., From Two-Dimensional Linear Quadratic Optimal Control to Iterative Learning Control. Paper. Iterative Learning Control for Batch Processes, Ind. Eng. Chem. Res., 45, (006). 39. Chen, Y.-H., Su, A.-J., Shiu, S.-J., Yu, C.-C. and Shen, S.-H, Batch Sequencing for Run-to-Run Control: Application to Chemical Mechanical Polishing, Ind. Eng. Chem., Res., 44, (005). 40. Firth, S. K., Campbell, W. J., Toprac, A. and Edgar, T. F., Justin-time Adaptive Disturbance Estimation for Run-to-Run Control of Semiconductor Processes, IEEE Trans. On Semicon. Manuf., 9(3), 98-35(006). 4. Wilde, D. J. and Beightler, C. S., Foundations of Optimization, Prentice-Hall, Englewood-Cliffs(967). 4. Zafiriou, E. and Zhu, J. M., Optimal Control of Semi-Batch Processes in the Presence of Modeling Error, Proc. of 990 ACC., San Diego, USA, (990). 43. Zafiriou, E., Adomaitis, R. A. and Gattu, G., Approach to Runto-Run Control for Rapid Thermal Processing, Proc. of 995 ACC., Seattle, USA, 86-88(995). 44. Hara, S., Yamamoto, Y., Omata, T. and Nakano, N., Repetitive Control System: a New Type Servo System for Periodic Exogeneous Signals, IEEE Trans. A.C., 33, (998). 45. Lee, J. H., Natarajan, S. and Lee, K. S., A Model-based Predictive Control Approach to Repetitive Control of Continuous Processes with Periodic Operations, J. Process Control,, 95-07(00). o44 o k
Modeling and Simulation of Drying Cylinders in Paper Processes
Korean Chem. Eng. Res., Vol. 45, No., February, 007, pp. 7-4 os o o m ml Ç içii k 39-79 ne 7 (006 o 7p r, 006 o 3p }ˆ) Modeling and Simulation of Drying Cylinders in Paper Processes Eun Ho Lee, Ki-Young
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.
ThD2-4 Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ. ) Abstract For realization of the precise positioning control of
CAP A CAP
2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ
Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή ασολογίας και Φυσικού Περιβάλλοντος,
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Gain self-tuning of PI controller and parameter optimum for PMSM drives
14 1 1 1 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 1 Dec. 1 1 1 1 1 1. 151. 154 PI PI E E 1% 4r /min TM 359 A 17-449X 1 1-9- 6 Gain self-tuning of PI controller and parameter optimum for PMSM drives YANG
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal
Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 73-80 i m i n s o l n n y j m n i Çly *, Çmm 790-784 e q 31 * pn / l 446-701 npe } 1 (2006 10o 9p r, 2006 2007 1o 4p }ˆ) Optimal Trajectory Finding
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
HDD. Point to Point. Fig. 1: Difference of time response by location of zero.
Trajectory Tracking Control using Two-degree-of-freedom Control Based on Zero-Phase-Minimum-Phase Function Factorization for Nonminimum-Phase Continuous-Time System T. Shiraishi and H. Fujimoto (The University
Expansion formulae of sampled zeros and a method to relocate the zeros
Vol., No., /7 29 Expansion formulae of sampled zeros and a method to relocate the zeros Takuya SOGO It is known that the transfer function of sampled-data system has so-called intrinsic and discretization
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
MARKET INTRODUCTION System integration
MARKET INTRODUCTION System integration Air to Water Split System Inverter Driven Nomιnal Capacities : 5-6,5-9 - 11,5 kwth Max LWT= 60 C & Min OAT = -15 C COP>= 4.1 Air to Water Monoblock Inverter Driven
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
A new practical method for closed-loop identification with PI control
7 9 1 9 : 1 815(1)9 14 5 Control Theory & Applications Vol. 7 No. 9 Sep. 1 PI,, (, 5164) : PI,,.,, (SOPDT).,, PI ;,, : ; PI ; ; : TP73 : A A new practical method for closed-loop identification with PI
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Monetary Policy Design in the Basic New Keynesian Model
Monetary Policy Design in the Basic New Keynesian Model Jordi Galí CREI, UPF and Barcelona GSE June 216 Jordi Galí (CREI, UPF and Barcelona GSE) Monetary Policy Design June 216 1 / 12 The Basic New Keynesian
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΜΗΧΑΝΙΚΗΣ ΜΕΤΑΤΡΟΠΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του φοιτητή του
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Design and Fabrication of Water Heater with Electromagnetic Induction Heating
U Kamphaengsean Acad. J. Vol. 7, No. 2, 2009, Pages 48-60 ก 7 2 2552 ก ก กก ก Design and Fabrication of Water Heater with Electromagnetic Induction Heating 1* Geerapong Srivichai 1* ABSTRACT The purpose
Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application
Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 67-72 MISO y ARX m MIMO m m : j nk kjiçlslçm Çm * 121-742 ne e 1 *LS r l 431-080 kke k (2006 11o 20p r, 2006 12o 21p }ˆ) Idenificaion of MIMO
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Resilient static output feedback robust H control for controlled positive systems
31 5 2014 5 DOI: 10.7641/CA.2014.30666 Control heory & Applications Vol. 31 No. 5 May 2014 H,, (, 250100), (LMI),, H,,,,, H,, ; H ; ; ; P273 A Resilient static output feedback robust H control for controlled
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010
ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ
ΚΑΤΑΡΤΙΣΗ ΜΗΤΡΩΟΥ ΕΣΩΤΕΡΙΚΩΝ & ΕΞΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε., ΣΤΕΦ/ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Γνωστικό Αντικείμενο: Computer Aided Design (CAD) Computer
An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
The Improvement of Cake Filtration Rate using CO 2
Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 468-475 m ( ) i m m i m m Ç i p 402-751 p}e n 253 (2006 3o 6p r, 2006 6o 26p }ˆ) The Improvement of Cake Filtration Rate using Gas Saturation
LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO
ol. 6, No.3 7/(7) IU UNGOO ontrol Engineering for Development of a Mechanical entilator for IU Use Spontaneous Breathing ung Simulator UNGOO Kenji OZAKI*yoji IIDA*Kazutoshi SOGA* and Yasuhiro UENO* A lung
* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups
Wiki Wiki Wiki Wiki qwikweb Wiki Wiki Wiki Analysis of user activity of closed Wiki used by small groups Satoshi V. Suzuki, Koichiro Eto, Keiki Shimada, Shinobu Shibamura and Takuichi Nishimura Wikis are
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
: : : NEA 2013 1 : : : (4507) :29-10-2013 2 Περιεχόμενα... 5 ABSTRACT... 6... 7 1:... 8 1.1 :... 8 1.2... 8 1.3... 9 1.4... 10 1.5... 11 1.5.1... 12 1.6... 13 1.6.1... 13 1.6.2 µ... 16 2:... 19 2.1 µ µ...
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z
Enhancement of Boundary Condition Relaxation Method for D Hopping Motion Planning of Biped Robots University oftokyo Tomomichi Sugihara and Yoshihiko Nakamura Abstract Boundary Condition Relaxation method[],
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Information and Communication Technologies in Education
Information and Communication Technologies in Education Instructional Design = Instructional Systems Design (ISD) K. Vassilakis / M. Kalogiannakis Instructional Design Instructional Design (also called
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Presentation Structure
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝ. ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ανεµόµετρο AMD 1 Αισθητήρας AMD 2 11 ος όροφος Υπολογιστής
Fragility analysis for control systems
3 1 213 1 DOI: 1.7641/CTA.213.2294 Control Theory & Applications Vol. 3 No. 1 Jan. 213 1, 1, 2, 1, 1 (1., 151; 2., 158) :. ( 1, j), ( 1, j)., Bode...,,,, Bode. : ; Bode ; ; ; : TP273 : A Fragility analysis
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
2.153 Adaptive Control Lecture 7 Adaptive PID Control
2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
The optimization of EV powertrain s efficiency control strategy under dynamic operation condition
16 3 2012 3 ELECTRI C MACHINES AND CONTROL Vol. 16 No. 3 Mar. 2012 1 1 1 2 2 3 1. 250061 2. 250014 3. 251010 3. 3% U 469. 72 A 1007-449X 2012 03-0053- 07 The optimization of EV powertrain s efficiency