Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application
|
|
- Παιάν Δράκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp MISO y ARX m MIMO m m : j nk kjiçlslçm Çm * ne e 1 *LS r l kke k ( o 20p r, o 21p }ˆ) Idenificaion of MIMO Sae Space Model based on MISO High-order ARX Model: Design and Applicaion Wangyun Won, Jieun Yoon, Kwang Soon Lee and Bongkook Lee* Deparmen of Chemical and Biomolecular Engineering, Sogang Universiy, 1, Shinsoo-dong, Mapo-gu, Seoul , Korea *LS Indusrial Sysem Co., Ld., Hogye-dong, Dongan-gu, Anyang, Gyeonggi , Korea (Received 20 November 2006; acceped 21 December 2006) k qd, q realizaion, q runcaionp p f, MIMO ˆ p pe p o rp p l. l MIMO edšp ARX MISO e dšp. p, ARX p Ž qd l p r., realizaionp p MISO ARX r l MISO ˆ p lv, MIMO ˆ. srp, q realizaion q runcaionp p q MIMO ˆ p llv. rk p k CO 2 n r e q p m rl o m rlp l rn l. h Absrac An efficien mehod for idenificaion of MIMO sae space model has been developed by combining parial leas squares (PLS) regression, balanced realizaion, and balanced runcaion. In he developed mehod, a MIMO sysem is decomposed ino muliple MISO sysems each of which is represened by a high-order ARX model and he parameers of he ARX models are esimaed by PLS. Then, MISO sae space models for respecive MISO ARX ransfer funcion are found hrough realizaion and combined o a MIMO sae space model. Finally, a minimal balanced MIMO sae space model is obained hrough balanced realizaion and runcaion. The proposed mehod was applied o he design of model predicive conrol for emperaure conrol of a high pressure CO 2 solubiliy measuremen sysem. Keywords: Idenificaion, PLS, Balanced Realizaion, Balanced Truncaion, Model Predicive Conrol 1. p rl rl p p e ˆ p ˆq p r p r l p r. v p rp rp q s l rp v p p pn l dv k. rp rl l e p pe rp r p r p p rp. e rp r p l o rp p 1970 l Ljungl p p m m (predicion error mehod) To whom correspondence should be addressed. kslee@sogang.ac.kr 1990 l rk pe (subspace idenificaion mehod) p [1]. p m m p parameric p p. rp p p (SISO)( p p p (MISO)) p p m m Ž r l rp kp r p rp r Ž p qrp v., pe p nonparameric l p, r p p n l, QR p p n l rp kr q p (MIMO) ˆ p }k vp [2, 3]. Van Overscheem DeMoorl p N4SID q o, p p l p pe p p rnl p l l [4-8]. pe p p 67
2 68 omlovpp p pn n p(biased) p r l, kr l l ˆ pe e p l o rl pep l. r l p r p k l p r p p l o m m l p p n rp v. r p er rp m p n, r p p rp l eˆv (collineariy)l p illcondiioningp edš Ž r rl q p. MIMO rp e r rp l eˆ l l l p r p kv., r p er r p n, PRBS(pseudo random binary sequence)m p k Ž p r e p r p pp p l p r. l p r rp kp p rp r p l o, l l sl l p s l lrp e p pe edšp m. p vp qd (parial leas square regression) p l (muli-collineariy) l p Ž r r, q (balanced) realizaion q runcaionp l p(minimal) q MIMO ˆ p ll. 2. m m rl rl p r p r l p p r, rp q p pp n n. p o pp p rp pe p m. Ì 1: p r}. Ì 2: MIMO rp MISO rp. Ì 3: 2 l r MISO rl ARX r qd n l Ž r. Ì 4: MISO ARX r ˆ. Ì 5: MISO ˆ p p(non-minimal) MIMO ˆ. Ì 6: q realizaion q runcaionp p q ˆ. op p np p m nz o sp pe l o p r} rp n. p p (oulier) r l o Ž mlp s p f, k vv kp p l p r p. p o, l l e (1) p p p p l p r, Ž r s p eˆ o l p p r (normalizaion) m. o45 o k y () l, y m m u p r r m p p, y m u p σ y m σ u p. p, MIMO rp p l MISO rp m y ARX }o ARX p Ž r k ARMAX, p Ž r p p, ARMAXm p q p n v k er rp q p qrp p [1]. l l MISO rp e (2)m p ARX m. l, y r, u rp, e n p. np, n u p p, n y p p. e (2) 1,...,N kp p k e e (3). e (3)l Φ i m Y i p r rl ppp ˆ rl m p ˆ v k m. Y i Φ i Θ i + E i l i1,..., n y Φ i y m y u m u , u() σ y σ u n n u a ik ( k) + b jk u j ( k) + e i k 1 j 1 l i1,..., n y (2) ( n + 1) Y i ( N) n () () 1 u 1 () n u 1 () 1 u nu () n u nu () 1 ( ) ( N n) u 1 ( N 1) u 1 ( N n) u nu ( N 1) u nu ( N n) N 1 ARX p r p mis-specificaionp p l p r ill-condiioning l, Ž r rl r p. p l p r o p m qd o. p e (4)m p p llv Φ i p p Y i p n p f, p v p pn l l p r r p. Φ i [ U Ũ ] D 0 V T UDV T UQ T 0 D Ṽ T e (3)p rl e (4)m p rp Φ i m Yi p p l p pn l, m p rp v p Φ i p Y i mp q l., qd e (5)m p Φ i m Y i el l, pp p (1) (3) (4)
3 p v p r } l, Φ i k Y i m r. pm p Φ i m Y i l p n l Ž r r p kr r vp prp p. l Abdi[9]p qd k vp pn l e (2)p Ž a ik, b jk (i 1,...,n y, j1,...,n u, k 1,...,n) r m. MISO ARX p MIMO ˆ p pe: m rn 69 Φ i ΤΡ Τ Y i TS T (5) l Sm P (loading marix)p, T qq (laen vecors) l r (score marix)p Realizaion MIMO m e (2)p MISO ARX r pp ˆ. x ( + 1) A i x () + B ij u j A i C i x () a i1 1 0 n u j 1 l i1,...,n y, j1,...,n u a i 2 0 0,, C i [ ] (6) B b ij2 ij 0 0 a in b ij1 b ijn (similariy ransformaion)p q realizaionp [10]. p p ˆ, ˆm pp l p e (8)p rl L c (x)m L o (x)p l p. L c ( x) 1 --x T 1 G C x 2 l G c C C T, C [ B AB A n 1 B] 1 L o ( x) --x T G o x 2 l G o Õ T Õ, Õ [ ( CT CA) T ( CA n 1 ) T ] T (8) l C rl, Õ, G c rl gramian, G o gramian, np p. l l e (7)p MIMO ˆ p XMZl q MIMO ˆ p m. p p e (9) p, e (10)p s. l Mp [11]p k vp l m. Z ( + 1) AZ + BU() Y () CZ() l A M 1 AM, B M 1 B, C CM (9) l MISO ˆ p e (7) p MIMO ˆ. X ( + 1) AX + BU() l Y () CX() Y () y 1, y ny A 1 0 U () 2-4. m realizaion m runcaion r p p rl l edšp ˆ pp sr p edšp rl, r p ed Šp ˆ r p edšp [12]. e (6)p MISO ˆ p rl ˆ p p realizaionp. v p e (7) p MIMO ˆ rl ˆ l p realizaionp. MIMO ˆ p rl rl p p p v k ˆ p. l q p ˆ, ˆm pp l p p p rp kr ˆ, rl p p p p u 1 u ny B 11 B 1nu A, B, C 0 A ny B ny B 1 ny n u C C ny (8) G c G o Σ 0 σ 2 0, σ 1 > σ 2 >... > σ n (10) o el q MIMO ˆ p rl gramian gramianp Hankel p p o p. l 1/σ i p i w ˆl p l vp l ˆ, σ i p l vl i w ˆp l ˆ. q realizaionp p vp pn l q runcaionp m. q runcaionp e (9)p q MIMO ˆ l rl ˆ r p f p q MIMO ˆ p l. p o r e (10)l Hankel p p l p rp Σ p p r m. Σ e (9)p Σ 1 0, Σ 1» Σ 2 0 Σ 2 ( A, B, C) p. (11) e (11)p Σl p, r A 11 A 12 A A 11, B B 1, C [ C 1 C 2 ] C 1 A 21 A 22 B 2 (12) e (12)l Σ 2 0l A 11 kr ( A 11, B 1, C 1 ) p p realizaionp [14]. σ σ n B 1 Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007
4 70 omlovpp p 3. m sm Fig. 1l pe l p C++ ll pe Žˆv p m. Fig. 1(a)l *.csv(d ) Žp rq p p m pe l p, qe Fig. 1(b)m p qq ˆ p ˆ. p, p Φm Y q rp qq ˆ. Fig. 1(c)m p q runcaionp o Hankel p p ˆ p ˆ, p rr Hankel p p l s rp llv p q MIMO ˆ p A.csv, B.csv, C.csv Žpl rq. er p m p m p Y_Simulaion.csv Žpl rq, p pe llv r p r p. 4. Fig. 2l l l p k CO 2 n r e q ˆ l. lv k l l CO 2 ~m pm k~ l, k l p p p k r l ~p k~l n. k l p k l ms p m s r p f m r pr ov p rl rp. p msm p ql. rp rl D/A l 4-20 map r e sq, m rl, n m n p SISO rp. k CO 2 n r e q lv m l r n p rp o, r m rl n. e p p o m r l k r ov lk. v 60 bar p k CO 2 ~ n l p p, p p msm pp lr l p sq. rep edšp l, ˆ p o q r p. p vp sp PID rl rl l rm, qld p m p v rl Fig. 1. Human-machine inerface (HMI) of he developed idenificaion package program; (a) an iniial screen, (b) variance able, (c) Hankel singular value able. o45 o k Fig. 2. Process flow diagram of he concerned solubiliy measuremen experimenal sysem.
5 MISO ARX p MIMO ˆ p pe: m rn 71 Fig. 3. Resuls of emperaure predicion in he solubiliy measuremen sysem; (a) mean cenered and normalized emperaure, (b) inpu exciaion signal. rn o. m rl r p r l p p r, er rp q sp p pp n n. r p pe p rq lp, p o pe e p l. m ˆp p l Fig. 3(b)p 7-10 ma p e l - ˆl 57e k p m p, e p 1 p l 3,420 p m p m. p, pe p r p rq l m rl l rn m. r p 5 r l Ž r mp, m rl Won [13]p rl p p l m., PID rl r n l m rlp nr m m. p PID r l Ziegler-Nichols sp p sp, spp r sp m. Fig. 4. Closed-loop response agains a se poin change under MPC and PID conrol; (a) rajecory of emperaure, (b) process inpu of MPC, (c) process inpu of PID conrol. Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007
6 72 omlovpp p Table 1. Variance of Φ and Y explained by he laen vecors Laen Vecor Percenage of Explained Cumulaive Percenage of Percenage of Explained Cumulaive Percenage of Variance for Φ Explained Variance for Φ Variance for Y Explained Variance for Y m rk pe p rq r p rr m rl l rn l k CO 2 n r e q p m rl m. Fig. 3(a)l p ep r m r m pe p llv m m p m. p l pe p m m p er m r p q p p. p m m p Table 1 l 2 qq p ˆ l T p, e (5) o Ŷ TS pn l T l. Fig. 4l PID rlm pe p rq r p ˆq m rl k CO 2 n r q p m rll rn ˆ l. p, rl 1 p r m. PID rlp n m rlm l m r l rp rl qp p. PID rl p m p l l rl m l rl qp m p r, m r l l kr m e p. rp msm pp lr l p p v rp, 2 qo v PID rl rl l p. pe l p rq 5 r p ˆq m rl m r l sp rl p l. m rlp m p p rl p rk s p s e q l, p p m p p. p f m r l kr. rp n, p k rp p e sp rl p lp pl. 6. l qd pn l ARX p r, q realizaion, q runcaionp p q p e ˆ p rq p e p m. p rr m rl n r rp m rll rn p f, pe p lv r p p v m. l lqo l e r ll lp p p ld. 2 p v q p qrrp vol. y 1. Ljung, L., Sysem Idenificaion Theory for he user, 2nd ed., Prenice-Hall, New Jersey, NJ(1999). 2. Favoreel, W., Moor, B. D. and Overschee, P. V., Subspace Sae Space Sysem Idenificaion for Indusrial Processes, J. Process Conrol, 10(2), (2000). 3. Overschee, P. V. and Moor, B. D., N4SID: Subspace Algorihms for he Idenificaion of combined deerminisic-sochasic Sysems, Auomaica, 30(1), 75-93(1994). 4. Qin, S. J., An Overview of Subspace Idenificaion, Comp. Chem. Eng., 30(10), (2006). 5. Chiuso, A. and Picci, G., The Asympoic Variance of Subspace Esimaes, J. Economerics, 118(1), (2004). 6. Jia, C., Rohani, S. and Juan, A., FCC Uni Modeling, Idenificaion and Model Predicive Conrol, a Simulaion Sudy, Chem. Eng. Proc., 42(4), (2003). 7. Lee, K. S., Eom, Y., Chung, J. W., Choi, J. and Yang, D., A Conrol-relevan Model Reducion Technique for Nonlinear Sysems, Comp. Chem. Eng., 24(2), (2000). 8. Sima, V., Sima, D. M. and Huffle, S. V., High-Performance Numerical Algorihms and Sofware for Subspace-based Linear Mulivariable Sysem Idenificaion, J. Comp. Appl. Mah., 170(2), (2004). 9. Abdi, H., Parial Leas Squares (PLS) Regression, Enc. Soc. Sci. Res. Meh., Thousand Oaks (CA), TO(2003). 10. Helmke, U. and Hüper, K., A Jacobi-ype Mehod for Compuing Balanced Realizaion, Sys. Con. Le., 39(1), 19-30(2000). 11. Chen, C. T., Linear Sysem Theory and Design, 3rd ed., OXFORD, New York, NY(1999). 12. Åsröm, K. J. and Wienmark, B., Compuer-conrolled sysems heory and design, 3rd ed., Prenice-Hall, New Jersey, NJ(1997). 13. Won, W., Lee, K. S., Lee, B., Lee, S. and Lee, S., Model Predicive Conrol of Condensae Recycle Process in a Cogeneraion Power Saion: I. Conroller Design and Numerical Applicaion, Proceedings of SICE-ICASE Inernaional Join Conference 2006, Busan, Korea, 178(2006). 14. Zhou, K., Doyle, J. C. and Glover, K., Robus and Opimal Conrol, Prenice-Hall, New Jersey, NJ(1996). o45 o k
Modeling and Simulation of Drying Cylinders in Paper Processes
Korean Chem. Eng. Res., Vol. 45, No., February, 007, pp. 7-4 os o o m ml Ç içii k 39-79 ne 7 (006 o 7p r, 006 o 3p }ˆ) Modeling and Simulation of Drying Cylinders in Paper Processes Eun Ho Lee, Ki-Young
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016
4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
2002 Journal of Software
1000-9825/2002/13(02)0239-06 2002 Journal of Sofware Vol13, No2 -,, (, 100084) E-mail: shijing@mailssinghuaeducn; xingcx@singhuaeducn; dcszlz@singhuaeducn hp://dbgroupcssinghuaeducn : 10 12,, I/O -, -,,,
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Analiza reakcji wybranych modeli
Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium
Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal
Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 73-80 i m i n s o l n n y j m n i Çly *, Çmm 790-784 e q 31 * pn / l 446-701 npe } 1 (2006 10o 9p r, 2006 2007 1o 4p }ˆ) Optimal Trajectory Finding
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
The Improvement of Cake Filtration Rate using CO 2
Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 468-475 m ( ) i m m i m m Ç i p 402-751 p}e n 253 (2006 3o 6p r, 2006 6o 26p }ˆ) The Improvement of Cake Filtration Rate using Gas Saturation
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods
Korean Chem. Eng. Res., Vol. 44, No. 5, October, 006, pp. 45-434 { oh l om oh m -74 ne e (006 9o p r, 006 9o 3p }ˆ) Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods
TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
A New Approach to Bounded Real Lemma Representation for Linear Neutral Systems
46-57 388 4 3 3 sariai@ee.knu. ac.ir agira@knu. ac.ir 3 labibi@knu. ac.ir (388// 388/9/8 :. -..... :. A New Approac o Boune Real Lemma Represenaion for Linear Neural Sysems Ala Sariai, Hami Reza agira
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation
Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 57-66 Methanel C lk l i nj r o i p Çm Çmm Ç s 100-715 ne t 3 26 (2006 11o 15p r, 2006 12o 19p }ˆ) A Comparison Study between Batch and Continuous
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR
EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet
JFE No. 4 20045 p 82 Composite Material for Automotive Headliners Expandable Stampable Sheet with Light Weight and High Stiffness A JFE SUZU JFE HA KP 50 mass 30 UL 800 g/m 2 7.2 N/mm Abstract: KP-Sheet
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation
Journal of the Korean Chemical Society 007, Vol. 5, o. 4 Printed in the Republic of Korea ù x mw ½ w š w * w yw (007. 5. Study of Excess Gibbs Energy for a Lattice Solution by Random umber Simulation Hae-Young
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery
Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007, pp. 242-248 y k 12-V }nsm } n m Çn ÇnksÇ Ço * Ç * kt l vedš 443-749 oe m o} 5 * q 445-706 e q 772-1 (2007 2o 9p r, 2007 3o 1p) Modeling of the Charge-discharge
Ανταλλακτικά για Laptop Lenovo
Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
(Paw Dalgaard) NaCl. NaCl. (Dalgaard et al., 2002) (μ max ) (Lodge and Hinshelwood 1943)
(Paw Dalgaard) NaCl. NaCl Trypone Soya BrohBrain Hear Infusion (Dalgaard e al., 2002). (μ ) (Lodge and Hinshelwood 1943)... 217 (Dalgaard, 2002) MicroFi sofware www.ifr.bbsrc.ac.uk/microfi/ N Log N ) =
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER
Πρακτικά 1ου Πανελληνίου Συνεδρίου για την Αξιοποίηση των Βιομηχανικών Παραπροϊόντων στη Δόμηση, ΕΒΙΠΑΡ, Θεσσαλονίκη, 24-26 Νοεμβρίου 2005 ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
Influence of Flow Rate on Nitrate Removal in Flow Process
J. Jpn. Soc. Soil Phys. No. 33, p.1-2-,**/, ******* Influence of Flow Rate on Nitrate Removal in Flow Process Toshio TABUCHI*, Hisao KURODA**, Akiko IKENOBE** and Mayumi HIRANO** * Former professor of
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
Utkin Walcott & Zak ¼
uk j Shft-Senorle Speed Control of the Permnent Mgnet Synchronou Motor under Periodiclly Time-Vrying od ƒf NSC 87--E-009-07 86 8 87 7 knping @cc.nctu.edu.tw o uk j ¼v kƒ Utkin ¼ j uk j ¼ j j¼ uk j j ukj¼
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Πραγματοποιήσιμοι Δυναμικοί Ελεγκτές σε Ουδέτερα Συστήματα με Χρονικές Καθυστερήσεις για Βιομηχανικές Εφαρμογές ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Πραγματοποιήσιμοι Δυναμικοί Ελεγκτές σε Ουδέτερα Συστήματα με Χρονικές Καθυστερήσεις
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
( N m 2 /C 2 )( C)( C) J
Electrical Energy and Capacitance Practice 8A, p. 669 Chapter 8. PE electric = 6.3 0 9 J q = q = q p + q n = ().60 0 9 C + ()(0) = 3.0 0 9 C kcqq (8.99 0 9 N /C )(3.0 0 9 C) r = = P Ee lectric 6.3 0 9
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]
Ó³ Ÿ. 2004. º 3[120] Particles and Nuclei, Letters. 2004. No. 3[120] Š 621.384.633.5/6 Š ˆ ˆ Šˆ Šˆ Š ˆ Ÿ Ÿ ˆ ˆ.. Œ ϱµ 1,.. µ 1,.. ³ µ 1,. Œ. Ò 1, ƒ.. Ê ±µ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê Œµ ±µ ± µ Ê É Ò É ÉÊÉ
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
http://doc.rero.ch To whom correspondence should be addressed: Dr. Beat Schwaller, Unit of Anatomy,
Published in "" which should be cited to refer to this work. Calretinin is essential for mesothelioma cell growth/survival in vitro: a potential new target for malignant mesothelioma therapy? Anatomy,
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
!"#$%&'()"&*+",*,%-%,.%,()"&*./*01#(&*(&2*#(304&%*54'6%&%,'* 7460*'/&60%)3*(&2*&(61,(54')3*'$%%30*
!"#$%&'()"&*+",*,%-%,.%,()"&*./*01#(&*(&2*#(304&%*54'6%&%,'* 7460*'/&60%)3*(&2*&(61,(54')3*'$%%30* 8(56"*9&4-%,'46/*:*;4&5(&2*:*?* 8#/*@%%'6"&*(&2*A1/*@,"7&* B04'*7",C*4'*543%&3%2*1&2%,*60%*!,%()-%*!"##"&'*8D,4.1)"&EF"&!"##%,34(5EF"G%,4-'*>H?*9IJ*K&L5(&2*M*N(5%'*O43%&'%H*
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
A Study on Physical Properties and Catalytic Combustion of Methane of Sr Hexaaluminate Prepared using 1-butanol and Ethylene Glycol
Krean Chem. Eng. Res., Vl. 45, N. 3, June, 2007, pp. 209-214 1utanl ethylene glycll mk i Sr heaaluminatem n Š i mi i Çk m* r q l v 561-756 r rte v v 1 664-14 * 305-701 re 373-1 (2006 10 10p r, 2006 12
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07