LONGITUDINAL INSTABILITIES

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LONGITUDINAL INSTABILITIES"

Transcript

1 1) Inroducion ) Impedances and wake funcions 3) Longiudinal dynamics 4) Robinson insabiliy 5) Poenial well bunch lenghening LONGITUDINAL INSTABILITIES CAS 7, Daresbury; A Hofmann cas7li-1

2 1) INTRODUCTION Overview The single paricle moion is given by exernal guide fields (dipoles, quadrupoles, RF), iniial condiions and synchroron radiaion Beam wih many paricles induces currens in vacuum chamber impedance and creaes self fields acing back on i This collecive acion by many paricles can: give synchroron frequency shif due o modified focusing; increase iniial disurbance, insabiliy; change paricle disribuion, (bunch lenghening) Muli-urn effecs driven by narrow-band caviy wih memory build up insabiliy in many urns wih small self-fields reaed as perurbaion Sar a small disurbance from a saionary beam, calculae fields i produces in impedance, check if hey increase/decrease he iniial ampliude, give growh/damping rae Check his for orhogonal (independen) modes of disurbances cas7- Bunch induces fields in passive caviy, hey oscillae and ac back nex urn, in- or decrease iniial disurbance depending on phase bunch caviy V caviy () urn 1 urn Single raversal effecs driven by srong self-fields from broad impedances change disribuion, modify oscillaion modes and can couple hem Self consisen soluions are difficul o ge, bunch lenghening dl/ds I βc I w

3 Mechanism of single bunch, muli-urn insabiliy urn k: k I() σ urn k: ɛ İ k () I() k ɛ τ k σ τ E E I 1 T k + 1 T k + 1 ɛ τ ( + Q s ) (1 Q s ) E k + ( + Q s ) k + ɛ τ τ k I I 1 k + 3 k + 3 ɛ τ k + 4 k + 4 ɛ (1 Q s ) τ k τ k field k saionary bunch I k = I + I p cos(p ) I p = 1 T T I() cos(p )d oscillaing bunch, Q s = 1 4 ɛ k = ˆɛ sin(πq s k) phaseτ k = ˆτ cos(πq s k) space I = I + I p [cos(p )+ p ˆτ ( sin( + p ) + sin(p ) ) p ± = (p ± Q s ) 1 / E induced in Z r ( ± p ) acs on energy deviaion ɛ cas7li-3

4 4) IMPEDANCE, WAKE FUNCTION Resonaor Iw a Iw q image charges beam Beam induces wall curren I w = (I b I b ) E ḅunch İ R s I C L ~E v c V C s L R s Caviies have narrow band oscillaion modes which can drive coupled bunch insabiliies Each resembles an RCL - circui and can, in good approximaion, be reaed as such This circui has a shun impedance R s, an inducance L and a capaciy C In a real caviy hese parameers canno easily be separaed and we use ohers which can be measured direcly: The resonance frequency r, he qualiy facor Q and he damping rae α: r = 1 C, Q = R s LC L = R s = R s C r L r α = r Q, L = R s Q r, C = Q r R s cas7li-4

5 Driving his circui wih a curren I gives he volages and currens across he elemens Using L = R s /( r Q), C = Q/( r R s ) and α = r /(Q), r = 1/ LC gives diff eq I I R I C I L R s I C L V V R = I R R s V C = 1 I C d C V L = L di L d V + r Q V + rv = rr s I Q The soluion of he homogeneous equaion represens a damped oscillaion V R = V C = V L = V I R + I C + I L = I Differeniaing wih respec o gives I = I R + I C + I L = V R s + C V + V L V () = ˆV e α cos r 1 1 4Q + φ V () = e α A cos r 1 1 4Q +B sin r 1 1 4Q cas7li-5

6 Wake funcion Green funcion Response of RCL circui o a dela pulse I 1 r = C LC I R s L V C Q = R s L α = r Q V + r Q V + rv = rr s I Q Charge q brings he capaciy o a volage V ( + ) = q C = rr s Q q using C = Q r R s I() = qδ() Energy sored in C = energy los by q U = q C = rr s Q q = V (+ ) q = k pm q wih he parasiic mode loss facor k pm = r R s /(Q), given usually in [V/pC] Capacior discharges firs hrough resisor V ( + ) = q C = I R C = 1 V ( + ) C R s = rr s Q q = rk pm Q q Iniial condiions V ( + ), V ( + ) give from general soluion V () = e α A cos r 1 1 4Q + B sin r 1 1 4Q pulse response V () = qk pm e α cos r 1 1 4Q sin ( r 1 1 Q 1 1 4Q ) 4Q cas7li-6

7 G() = V () q = k pm e α cos r 1 1 4Q sin ( r 1 1 Q 1 1 G() is called Green or wake funcion G() k pm e α cos ( r ) for Q 1 This volage induced by charge q a = changes energy of a second charge q raversing caviy a by U = q V () = qq G() 1 G() k pm q q q E z () q wake funcion longiudinal field V () = G( )dq = I( )G( )d = qw () W () = V ()/q wake poenial cas7li-7 4Q ) 4Q, r = 1 LC G() is relaed o longiudinal field E z by an inegraion following he paricle wih v c and aking momenary field value V = Gq = z z 1 E z (z, )dz = f z z 1 E z (z)dz wih ransi ime facor f We use G() > where energy is los A paricle inside a bunch of charge q and curren I() going hrough a caviy a ime sees he wake funcion creaed by all he paricles passing a earlier imes < resuling in a volage I() dq

8 Impedance I() = Î cos() I I R s C L A harmonic exciaion of circui wih curren I = Î cos() gives differenial equaion V + r Q V +rv = rr s I Q = rr s Î sin() Q Homogeneous soluion damps leaving paricular one V () = A cos() + B sin() Pu ino diff-equaion, separaing cosine and sine ( r)a + r Q B = V ( r)b + r Q A = rr s Q Î Induced volage by he harmonic exciaion V () = ÎR cos() + Q r r sin() s 1 + Q ( r ) r has a cosine erm in phase wih exciing curren I absorbs energy, is resisive The sine erm is ou of phase, does no absorb energy, reacive Raio beween volage and curren is impedance as funcion of frequency 1 Z r () = R s 1 + Q ( r ) r Z i () = R s Q r r ) 1 + Q ( r r Resisive par Z r (), reacive par Z i () posiive below, negaive above r cas7li-8

9 Complex noaion We used a harmonic exciaion of he form I() = Î cos() = Î ej + e j wih I is convenien o use a complex noaion I() = Îe j wih giving compac expressions Using he differenial equaion V + r Q V + rv = rr s I Q wih I() = Î exp(j) and seeking a soluion V () = V exp(j), where V is in general complex, one ges + j r Q + r V e j = j rr s Q Îej The impedance, defined as he raio V/I becomes Z() = V Î = R s 1 + jq ( r ) r 1 jq r = R r s 1 + Q ( r ) = Z r + jz i r For Q 1 he impedance is only large for r or r / r = / r 1 and can be simplified 1 jq Z() R r s 1 + 4Q ( ) r Cauion: someimes I() = Îe i insead of I() = Îej is used, his reverses he sign Z i () cas7li-9

10 Properies of Green funcions and impedances G() k pm Green funcion Impedance Z() R s 1 1 Z R () Z I () π/ r Z() = R s / r Q = 3 Q = 15 G() k pm Green funcion π/ r 1 1 jq r r 1 + Q ( r r Impedance Z() R s ) = Z r + jz i Z R () Z I () / r The resonaor impedance has some specific properies: a = r Z r ( r ) max, Z i ( r ) = < < r Z i () > (inducive) > r Z i () < (capaciive) and any impedance or wake poenial has he general properies Z r () = Z r ( ), Z i () = Z i ( ) Z() = G()e j d Z() Fourier ransform of G() for < G() =, no fields before paricle arrives, β 1 cas7li-1

11 Typical ring impedance E Z E fi 5 Aperure changes form caviy-like objecs wih r, R s and Q and impedance Z() developed for < r, where i is inducive 1 jq r Z() = R r s 1 + ( Q r ) jr s + Q r r Sum impedance a rk divided by mode number n = / is wih inducance L cas7li-11 Z n = k r Z i R sk = L = L βc Q k rk R Z r I depends on impedance per lengh, 15 Ω in older, 1 Ω in newer rings The shun impedances R sk increase wih up o cuoff frequency where wave propagaion sars and become wider and smaller A broad band resonaor fi helps o characerize impedance giving Z r, Z i, G() useful for single raversal effecs However, for muli-raversal insabiliies narrow resonances a rk mus be used

12 5) LONGITUDINAL DYNAMICS A paricle wih momenum deviaion p has differen orbi lengh L, revoluion ime T and frequency L = α p c p = α c E β E L T T = = α c 1 γ p p = η p c p wih momenum compacion α c = 1/γ T, slip facor η c A ransiion energy m c γ T he - dependence on p changes sign E > E T 1 γ < α c η c > 1, E < E < E T 1 γ > α c η c < 1, E > For γ 1 p/p E/E = ɛ, η c α c V () ^V U s =e s bunch RF-caviy of volage ˆV, frequency RF = h, SR energy loss U he energy gain or loss of a paricle in one urn δɛ = δe/e is δe = e ˆV sin(h ( s + τ)) U s = synchronous arrival ime a he caviy, τ= deviaion from i, synchronous phase φ s = h s For h τ 1 we develop δe = e ˆV sin(φ s ) + h e ˆV cos φ s τ U cas7li-1

13 For δe/e 1 use smooh approximaion Ė δe/t, τ = T/T = η c E/E Ė = e ˆV sin φ s + he ˆV cos φ s τ π π π U Use T = π/, relaive energy ɛ = E/E ɛ = e ˆV sin φ s + he ˆV cos φ s τ U πe πe π E Energy loss U may depend on ɛ and τ U(ɛ, τ) U + U U E + E τ giving for he derivaive of he energy loss ɛ = he ˆV cos φ s τ U πe π E ɛ U π τ τ = η c ɛ where we used ha for synchronous paricle ɛ =, τ = we have U = e ˆV sin φ s Combining hese ino a second order equaion τ + U π E τ + s + η c πe U τ =, s = hη c e ˆV cos φ s, α s = 1 U πe π E s1 = s αs + η c U πe s τ + α s τ + sτ = τ = ˆτe αs cos( s1 ), ɛ = ˆɛe αs sin( s1 ) From τ = η c ɛ we ge ˆɛ = sˆτ/η c To ge real s we need cos φ s above ransiion where η c > and vice versa To ge a sable (decaying) soluion we need an energy loss which increases wih E α s = U 4π E = U 4πE ɛ > cas7li-13

14 7) ROBINSON INSTABILITY Saionary bunch Specrum I K () I p () T I( + T ) σ I() ime domain T T I p () σ σ frequency domain I( T ) Symmeric bunch, I() = I( ), circulaes wih urns k of duraion T, is a periodic curren and expressed by a Fourier series Ĩ() = 1 π I() cos()d, I() single I k () = I( kt ) = I pe jp muli = I + I p cos(p ) raversal p=1 I p = 1 T / T T / I()ejp d = 1 T T I() cos(p )d = π Ĩ(p ) Wih I() = I( ), real I p, cosine erms only A low frequencies I p I Gaussian bunch: I() = q πσ e σ, I p = q p e σ, σ = 1 T σ cas7li-14

15 Volage induced by a saionary bunch Saionary bunch induces volage in impedance Z() = Z r () + jz i () I k () = p = I p e jp = I + p =1 Use Z() =, combine posiive/negaive frequencies wih Z r ( ) = Z r (), Z i ( ) = Z i () I p cos(p ) V k () = Z(p )I p e jp = I p [Z r (p ) cos(p ) Z i (p ) sin(p )] p= p=1 Energy loss of a saionary bunch Energy los by he whole bunch wih N b paricles per urn in impedance Z() is W b = T I k ()V k ()d W b = T p= I pz(p ) = T 1 I pz r (p ) has only Z r Loss U = W b /N b per paricle is U = T N b I 1 I pz r (p ) = e I p Z r I p 1 I pz r (p ) This conains inegrals T cos(p ) sin(p )d = T cos(p ) cos(p )d = T for p = p for p p cas7li-15

16 Robinson insabiliy Qualiaive reamen Z R () r h h r Z R () Imporan longiudinal insabiliy of a bunch ineracing wih an narrow impedance, called Robinson insabiliy In a qualiaive approach we ake single bunch and a narrowband caviy of resonance frequency r and impedance Z() aking only is resisive par Z r The revoluion frequency depends on energy deviaion E = η c E E While he bunch is execuing a coheren dipole mode oscillaion ɛ() = ˆɛ cos( s ) is energy and revoluion frequency are modulaed Above ransiion is small when he energy is high and is large when he energy is small If he caviy is uned o a resonan frequency slighly smaller han he RF-frequency r < p he bunch sees a higher impedance and loses more energy when i has an energy excess and i loses less energy when i has a lack of energy This leads o a damping of he oscillaion If r > p his is reversed and leads o an insabiliy Below ransiion energy he dependence of he revoluion frequency is reversed which changes he sabiliy crierion cas7li-16

17 Oscillaing bunch I K () Ĩ() T ime domain T T I( τ ) I( T τ 1 ) σ τ τ 1 τ I( T τ ) T T 3T σ frequency domain, > s I( 3T τ 3 ) τ 3 Bunch execuing synchroron oscillaion wih s = Q s and ampliude ˆτ modulaes passage ime k a caviy in successive urns k I k () = k= I( kt τ k ) wih τ k = ˆτ cos(πq s k) ˆτ cos( s ) giving curren wihou DC-par I k () = I p cos(p ( ˆτ cos( s ))) > Develop for p ˆτ 1 cos(p ˆτ) 1, sin(p ˆτ) p ˆτ I k () I p [cos(p ) + p ˆτ sin(p ) cos( s )] > = I p cos(p ) + p ˆτ > (sin((p + Q s) ) + sin((p Q s ) )) The modulaion by he synchroron oscillaion resuls in sidebands in he specrum They are ou of phase wih respec o carriers and increase firs wih frequency p cas7li-17

18 Volage induced by oscillaing bunch Abbreviae: + p = (p + Q s ), p = (p Q s ) I k () = I p cos(p ) + p ˆτ > (sin(+ p ) + sin(p )) We resric on resisive impedance Z r and ge volage V kr () = I p [Z r (p ) cos(p ) > + p ( ˆτ Zr ( p + ) sin( p + ) + Z r (p ) sin(p ) ) V kr () = I p [Z r (p ) cos(p ) > + p [ ˆτ Zr ( p + ) (sin(p ) cos( s ) + cos(p ) sin( s )) +Z r (p ) (sin(p ) cos( s ) cos(p ) sin( s )) ]] Z r () Ĩ() Ṽ r () r Z r () p p p Synchr moion, smoohed: τ k = ˆτ cos(πq s k) τ = ˆτ cos( s ) τ = sˆτ sin( s ) = η c ɛ V kr () = I p [Z r (p ) cos(p ) > + p Z r ( p + ) sin(p )τ cos(p ) τ + Z r ( p ) sin(p )τ + cos(p ) τ s s cas7li-18

19 Energy exchange Express facors differenly, use τ = η c ɛ I K ()= I p [cos(p ) + p sin(p )τ] > V kr ()= I p [Z r (p ) cos(p ) > + p [ (Zr ( p + ) + Z r (p )) sin(p )τ (Z r ( p + ) Z r (p )) cos(p ) ηɛ s The energy per paricle and urn exchanged beween bunch and impedance cas7li-19 U(τ, τ) = 1 N b T I K ()V K ()d, N b = πi e Neglec higher erms in τ, ɛ, use inegrals T cos(p ) cos(p )d = T cos(p ) sin(p )d = T if p = p if p p U = e I > I pz r (p ) e I > I pp (Z r ( p + ) Z r (p )) ηɛ s U ɛ = e I > I pp (Z r ( p + ) Z r (p )) η s Discussed sabiliy of phase oscillaion τ + α s τ + sτ =, τ = ˆτe α s cos( s1 ) α s = du 4πE dɛ = η c he ˆV cos φ s πe Ipp(Z r ( p + ) Z r (p ) I h ˆV cos φ s s α s = s pip(z r ( p + ) Z r (p )) > sable I h ˆV cos φ s < unsable

20 Narrow impedance, only one harmonic p r Z r p Damping if α s >, insabiliy if α s < ɛ = ˆɛe αs sin( s ) α s = spip(z r ( p + ) Z r (p )) > I h ˆV cos φ s Above ransiion: cos φ s <, sabiliy if: Z r (p ) > Z r ( p + ) Damping rae proporional o difference in Z r beween lower and upper sideband Imporan narrow-band impedance = RF-caviy:p = h, I p I α s I (Z r ( p + ) Z r (p )) s ˆV induced V cos φ s V RF slope cas7li- s Qualiaive undersanding I k() I() I 1() urn k τ T σ Oscillaing bunch (Q s = 5) Saionary bunch + Perurbaion I k() urn k+1 Caviy field induced by he wo sidebands E z r = ( + Q s ) E z r = ( Q s ) ɛ ɛ I() I 1() Phase moion of he bunch cener γ > γ T σ ɛ τ ɛ τ γ < γ T τ τ

21 6) POTENTIAL WELL BUNCH LENGTHENING dl/ds We ake a parabolic bunch form V () ˆV RF I V i I I w I() βc V i E z = dl di w dz V = d = dl dz di b d E z dz = L di b dz bunch I b (τ) = Î 1 τ ˆτ = 3πI 1 τ ˆτ ˆτ di b dτ = 3πI τ, I ˆτ 3 = I b, V = ˆV (sin φ s + h cos φ s τ) + 3πI Lτ, L ˆτ 3 = V = ˆV sin φ s + cos φ s h 1 + 3π Z/n I h ˆV cos φ s ( ˆτ) 3 s = hη c e ˆV cos φ s πe s = s 3π Z/n I 1 + h ˆV RF cos φ s ( ˆτ) 3 s = s s s 3π Z/n I h ˆV RF cos φ s ( ˆτ ) 3 Z n τ cas7li-1

22 V () ˆV RF bunch Reducion of s reduces longiudinal focusing and increases he bunch lengh s s = 1 + 3π Z/n I h ˆV RF cos φ s ( ˆτ) 3 s s = s 3π Z/n I s s h ˆV cos φ s ( ˆτ ) 3 Only incoheren frequency of single paricles is changed (reduced for γ > γ T, increased for γ < γ T ), bu no he coheren dipole (rigid bunch) mode This separaes he wo V () ˆV bunch ˆτ = ˆɛη c / s, ˆτ = ˆτ ˆɛη c / s = E s η c / s rel energy spread ˆɛ, long emi E s = ˆτ ˆɛ Proons: E s = consan, τ 1/ s small: ˆτ ˆτ 4 s s 3π Z/n I 4h ˆV cos φ s ( ˆτ ) 3, ˆτ or: + 3π Z/n I ˆτ ˆτ h ˆV cos φ s ( ˆτ ) 3 1 = ˆτ Elecrons: ˆɛ= cons by syn rad ˆτ 1/ s small: ˆτ ˆτ or: ˆτ ˆτ s s 3π Z/n I h ˆV cos φ s ( ˆτ ) 3, 3 ˆτˆτ + 3π Z/n I h ˆV cos φ s ( ˆτ ) 3 = cas7li-

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

3 Frequency Domain Representation of Continuous Signals and Systems

3 Frequency Domain Representation of Continuous Signals and Systems 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

D-Wave D-Wave Systems Inc.

D-Wave D-Wave Systems Inc. D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The canonical 2nd order transfer function is expressed as. (ω n

The canonical 2nd order transfer function is expressed as. (ω n Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems

From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems ECE 427 Homework #2 From he course exbook, Power Elecronics Circuis, Devices, and Applicaions, Fourh Ediion, by M.S. Rashid, do he following problems 1. Problem.1 on page 1. Draw he oupu volage and inpu

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12 ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fourier transform of continuous-time signals

Fourier transform of continuous-time signals Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008 Charged

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Oscillatory Gap Damping

Oscillatory Gap Damping Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

SMD Power Inductor-VLH

SMD Power Inductor-VLH SMD Power Inductor-VH Dimensions Unit: mm Type A B C E F H I J 252010 2.5±0.2 2.0±0.2 1.0max. 0.4±0.2 1.0min. 2.1 0.90 0.8 252012 2.5±0.2 2.0±0.2 1.2max. 0.4±0.2 1.0min. 2.1 0.90 0.8 321618C 3.2±0.3 1.6±0.2

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα