Fourier transform of continuous-time signals
|
|
- Σωκράτης Βλαχόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k () () δ () () δ( ) ( ) Periodic signal (T )> non-periodic signal x() T () x() x
2 Non-periodic signal & periodic signal, period T. Non-periodic Δ, T x() pt (), oherwise repeiion T Periodic 3 T () x() x 4
3 analyze a non-periodic signal in he frequency domain: using he frequency analysis of he corresponden periodic signal and compue he limi for T. 5 The periodic signal is non band-limied. 6 3
4 The produc T c k & he envelope () envelope for T c k Relaion beween hem? 7 General case he Fourier coefficiens of he periodic signal : T jk T () ck x e d T Equal on [-T/, T/] T jk T () ck x e d T 8 4
5 Fourier ransform ouside [-T/,T/] he non-periodic signal jk () ck x e d T Wih he funcion: j ( ) ( ) x e d ( ) π ck k, T T (The envelope of T c k ) 9 Square wave:differen values of T 5
6 Remarks The envelope is no affeced by T. Increase T specral componens are closer. T disance he discree specral represenaion becomes coninuous. he periodic signal non-periodic. Fourier pair Definiion j j x() ( ) e d ( ) x( ) e d π Inverse Fourier Transform Fourier Transform (specrum) 6
7 Remarks periodic signals : specral lines ( ) π ck k, T T non-periodic signals specra are coninuous 3 CTFT for signals in he class L for signals in L, he Fourier ransform is no necessarily from L Reconsrucion heorem! 4 7
8 x () p () σ () σ ( ) τ τ ( ) sin τ p τ () d < he Fourier ransform is convergen (he signal x() L ) bu () L. he reconsrucion of he signal from is 5 specrum is no obvious. Reconsrucion heorem If he signal x() belongs o L and has bounded variaion on he enire real axis hen is Fourier ransform can be invered using : x R () { x () }( ) e j lim F d R R 6 8
9 . Lineariy If x() and y() L and have he Fourier ransform () and Y() hen for any complex consans a and b he signal ax()+by() L and has he Fourier ransform a()+by(). Homework: Prove i. () + by( ) a ( ) by ( ) ax + 7. Time Shifing Time shifing -> modulaion in frequency (muliplicaion wih a complex exponenial). j x e Proof ( ) ( ) τ F j j { ( )} ( ) ( τ ) ( τ + ) j x x e d x e dτ e ( ). 8 9
10 Remarks Fourier ransform: complex funcion. The Fourier ransform H() of he impulse response h() of a sysem: frequency response. frequency dependence of he magniude of H() magniude characerisic of he sysem H() frequency dependence of he argumen of H() phase characerisic of he sysem arg{h()} 9 3. Modulaion Modulaion in ime -> shifing in frequency. Proof F e ( ) ( ) j e x j { () x e } x() j () ( ).. j j e e d j () ( ) x e d ( ) x
11 Dualiy operaion in ime anoher operaion in frequency : modulaion shifing (3 rd propery) nd operaion in ime firs operaion in frequency. ime shifing modulaion ( nd propery) This behavior is named dualiy. 4. Time Scaling If x() L is scaled version x(/a) L and he specrum of x(/a) is a frequency scaled version of he specrum of x(). he scaling is an auo-dual operaion. ( ) x a. a a
12 Proof F x j { x( a )} x( a ) e d x( τ ) a a ( a ). τ a a j τ e a dτ a ; a 3 Example: he square wave specrum is ime-scaled varian, a: a/ p τ () sinτ sin τ sin τ p ( ) () τ pτ () sin τ sin p p τ τ τ 4
13 ime compression frequency dilaion ime dilaion frequency compression 5 CTFT of he consan disribuion F () πδ ( ) 6 3
14 Proof he consan disribuion can be approximaed: lim p ( ) ( ) We know ha pτ lim pτ τ () e j τ τ () () d lim τ j e sinτ d j e d lim τ sinτ sinτ, τ τ, 7 The area under he graphical represenaion of he specrum: sinτ sin sin τ u + 4 τ u A d du du Si u u ( ) π So: (), e j d, and: A π j () e d πδ ( ) () πδ ( ) F 8 4
15 An immediae consequence: a new represenaive sring for he Dirac disribuion: lim τ sinτ δ π ( ) 9 5. Complex Conjugaion complex conjugaion in ime -> reversal and complex conjugaion in frequency. Proof F * x * F x * () ( ) * j j { ()} () () ( ) * x x* e d x e d ( ) F * () ( ) * 3 5
16 6. Time Reversal Time reversal -> reversal in frequency. Homework. Prove i. x F ( ) ( ) 3 7. Signal s Derivaion Time differeniaion -> muliplicaion wih j in frequency. x' F () j ( ) 3 6
17 Proof: F Inegraing by pars: F he signal is in L : j { x' () } x' ( ) e d j j { x' () } x( ) e + j x() e d j () e lim x() lim x ± ± So: x' F () j ( ) Signal s Inegraion For x() L wih () (no DC componen), is inegral L Time inegraion -> muliplicaion wih / j in frequency ( ) F x( τ) dτ for ( ) j 34 7
18 Proof We have: y() x( τ d )τ Apply for y() he differeniaion propery: F ( ) ( ) ( ) ( ) ( ) ( ) y ' x jy Y j Y defined in : So: x ( ) F ( τ ) ( ) dτ j Signals convoluion convoluion heorem he convoluion of wo signals from L belongs o L. convoluion of wo signals in ime -> produc in frequency. F ( ) ( ) ( ) ( ) x y Y 36 8
19 F x j { x() y() } ( x y)( ) e d x( τ ) y( τ ) x Proof: jτ j ( ) ( ) ( τ τ τ ) jτ e x e ddτ x( τ ) e dτ y( u) F () y() ( ) Y ( ) τ u j dτ e d ju e du. 37 Example. Triangle s specrum convoluion of wo recangular pulses, same duraion a riangle p p τ τ pτ τ () () τ () pτ () τ τ sin sin τ τ τ sin p () τ τ τ τ τ (convoluion heorem) 38 9
20 39. Specrum s Derivaion The derivaive of he specrum is he Fourier ransform of he signal jx(). () x ( ) d j d ( ) d d x d d ()( j) e x j () d j e d x() ( e ) j d d d 4
21 . CTFT of Real Signals. Properies. (The Specrum of he Even and Odd Pars of a Real Signal) The specrum of a real and even signal is real and even. The specrum of a real and odd signal is imaginary and odd. { } E( ) { } O( ) ( ) { } () Im ( ) x Re and e x j j o 4 Proof he real signal x() wih specrum (), complex : jφ( ) ( ) ( ) e Re{ ( ) } + jim{ ( ) } Polar form Is complex conjugae real ( ) ( ) ( ) x Caresian form ( ) * ( ) * { ( )} Im ( ) * jφ e Re j { } Polar form Caresian form 4
22 For real signals: By idenificaion: () ( ) ( ) ( ) * * x x ( ) ( ) Φ ( ) Φ( ) ( ) ; ; { } { ( ) } { ( ) } { ( ) } Re Re ; Im Im. Magniude and real par of specrum are even funcions Phase and imaginary par of specrum are odd funcions 43 Example - odd real signal τ sin τ τ j j τ τ x() p p e e τ τ + The specrum of a real and odd signal is imaginary and odd 44
23 p τ () τ sin ime shifing p τ τ e τ j τ sin and p τ τ + e τ j τ sin τ sin τ τ j j cos x () τ e e j Euler s relaion sin(u) -cos (u) 45. A Parseval like heorem for signals from L F { ( )}() () ( ) F { ()}( ) x y d x y d equivalen form: Fourier ransform of he signal x() wih he variable ( ) y( ) d x( ) Y ( ) d Signal x() wih variable 46 3
24 3. Relaion Fourier Transform of a non-periodic signal & exponenial Fourier series coefficiens of he periodic signal (see previous slides) ( ) π ck k, T T 47 Example T () T + x pt p T 48 4
25 he specrum of he signal x(): T cos ( ) j Applying he propery 3: c x k kt cos j coskπ j T k kπ 49 ) finie energy signals x() L L The Fourier ransform of a signal from L L is from L he energy of a signal in he frequency / ime domain. (Parseval or Rayleigh relaion) () energy densiy. using he L norm: ( ) π () d x d ( ) π x() 5 5
26 Proof If x() L L x*(-) L L. Their convoluion belongs o L. y( ) x( ) x * ( ) So, i has Fourier ransform, Y(). from he convoluion heorem : Y * * ( ) ( ) ( ( ) ) ( ) ( ) ( ) 5 We have: for : y y π j * () Y ( ) e d x( τ) x ( τ ) dτ π * () ( ) d x() τ x ()τ τ d So: ( ) π ( ) d y finie In consequence he funcion () belongs o L. 5 6
27 ) finie energy signals x() L \L he Fourier ransform of a finie energy signal: Fourier ransform in L space convergence in mean square τ j I { x() }( ) l.i.m. x( ) e d τ τ The L norm of he Fourier ransform : I { x() }( ) lim x() τ τ τ e j d 53 Truncaion x() by muliplicaion wih p τ () approximaion of x() L L Two approximaions. The beer one - longer suppor. The oher -an approximaion of he firs. The error ends o zero if he wo duraions end o infiniy. 54 7
28 he approximaion error I { x() p () }( ) I { x() p () }( ) limi for τ τ y ( ) L L ( ) x( ) p ( ) p ( ) τ τ () pτ () x() pτ () π x() d + π x() π x d τ,, τ > τ lim τ τ, τ >τ τ x τ τ τ j j () e d x() e d τ τ τ Parseval τ τ j () I () () x e d x p { τ } in mean square. 55 Plâncherel s Theorem The Fourier ransform definiion of a finie energy signal already given can be found under he name of Plâncherel s Theorem: 56 8
29 Plâncherel s Theorem i) Plâncherel s heorem shows ha he Fourier ransform of any finie energy signal belongs o L. ii) The Fourier ransform on L is a paricular case of he Fourier ransform on L. All he properies of he Fourier ransform on L are verified by he Fourier ransform on L. The Parseval s relaion - proved for signals in L L. I is no verified by signals in L L iii) The Parseval s relaion can be generalized on L, in he form: x π (), y() ( ), Y ( ) 57 he definiion of he scalar produc on L : If he wo signals are equal : Parseval s relaion. x π * * () y () d ( ) Y ( ) d x() d ( ) d π 58 9
30 4. Specrum s Convoluion The convoluion of he Fourier ransforms () and Y() gives he Fourier ransform of he produc x() y() muliplied by π. ( ) ( ) πf { ( ) ( )}( ) Y x y The convoluion of wo finie energy signals is of finie energy. Convolving wo finie energy specra () and Y() a finie energy specrum Z() 59 ( ) ( ) ( ) ( ) ( ) Z Y u Y u du j( u) π ( u) y() e d du π Z π ju j ( ) π y( ) ( u) e du e d Z ( ) π x() y() e j d Inverse Fourier ransform of x() he Fourier ransform of he produc x() y(). 6 3
31 5. Dualiy The inverse Fourier ransform : For : ( ) ( ) πx j () ( ) e d Applying wo imes he Fourier ransform a reversed varian of he original signal weighed by π. j πx e d, dualiy πx Fourier ransform of (). ( ) I { I { x( ) }( ) }( ) 6 πx double change of variables: j ( ) ( ) e d and j ( ) ( ) { ( )}( ) πx e d I, anoher form of dualiy. 5. Dualiy Using he wo forms of dualiy we can compue he specrum of a signal. 6 3
32 Sar from a known pair (x(), ()) Wha is he specrum of he signal ()? Change he variable and consans of ime wih variable and consans of frequency and vice versa obain he corresponding pair ((), πx(-)). 63 The Fourier Transform of signals Temporal window he specrum p τ sin τ () σ( + τ) σ( τ). In his case, x () p () and ( ). τ sin τ Changing he variables and consans τ sin ( ) ( ). π x π p () 64 3
33 Symmeric riangular signal he specrum () (). T sin p T T ri T T () () ( ). and T sin ri x T () sin ( ) ( ). π π ri x
34 Decreasing causal exponenial () (). e x wih > σ ( ) ( ) ( ) j e j d e d e e j j j ( ) j j ( ) ( ) { } {} { } + + Φ arcg j arg arg j arg arg
35 ( ) + ( ) arcg Φ 69 Decreasing non-causal exponenial x () e σ( ) >. x wih () e σ( ) >. wih j ( ) ( ). ( ) ( ) arg ( ) + { } arg arcg. j 7 35
36 36 7 Symmeric decreasing exponenial () ; < <, e, e e x s ( ) ( ) ( ). x x x s + ( ) ( ) ( ) j j s 7
37 Gaussian signal e a π e a 4a, a >. The specrum of a Gaussian signal is Gaussian 73 The Fourier Transform of Disribuions ) The specrum of he Dirac s disribuion for any es funcion ϕ(): ϕ ()() δ d ϕ( ) or ϕ()( δ ) d ϕ( ) he Dirac s disribuion is even. j j () e () e d { () }( ) Hence, we have obained: δ ϕ δ I δ ( ) ( ) 74 37
38 ) The specrum of he consan () dualiy () πδ( ) πδ( ) c πcδ ( ) 75 3) The specrum of he uni sep σ() I u() sgn and v(). { u' ( ) }( ) I{ δ( ) }( ). { u ( ) }( ) I ' I { u() }( ) σ u + v j j Iσ +πδ j { () }( ) ( ) () () () 76 38
39 4) The specrum of sgn() I { sgn} I{ u( ) } j, > sgn,, < 77 5) The specrum of he signal /(π) sgn j j π sgn ( ) π sgn (dualiy) j, > j sgn, π j, < 78 39
40 79 6) Fourier Transform of he inegral of a signal having DC componen, () x () τ dτ ( ) j + π ( ) δ( ) Proof: y () x() τ dτ x( τ)( σ -τ)τ d ( ) Y( ) ( ) I{ σ ( ) }( ) ( ) + πδ( ) π δ j + j ( ) δ( ) ( ) δ( ) ( ) ( ) 8 4
41 7) The specrum of he complex exponenial ( ) ( ) πδ e j πδ Modulaion: ( - ) 8 8) The specrum of cos j j e + e cos π δ - + δ + ( ) ( ) 8 4
42 Specrum for a limied cosine of duraion τ ( ) ( ) x cos p τ ( ) I{ cos} I{ pτ () } π sinτ δ( ) +δ( +) π sin( ) τ sin( +) τ ( ) τ + ( ) τ ( +) τ
43 9) The specrum of sin ( ) ( ) j j e e πδ - πδ + sin j j ( ) ( ) sin jπ δ - δ + 85 Fourier ransform of periodic signals The periodic signal y() convoluion of is resricion a one period, x() and he periodic Dirac s disribuion () x() δ () y T δ δ jk () e ( ) T T k he Fourier ransform of periodic δ T () wih period T -proporional wih he periodic δ () wih period
44 δ jk () e δ( kt ) T T k k Bu: { () }( ) I δ( -kt )}( ) { I δt k δ j () and δ( - ) e So: δt () e T I jk k { δ ()}( ) T e k jkt Variable and consan changes and T δ ( ) k I jkt e { δt () }( ) 87 ( ) ( ) I{ δ ( ) }( ) ( ) δ ( ) Y T Y π T k ( ) ( k ) δ( - k ) We have he relaion Fourier coefficiens of he periodic signal y() wih he Fourier ransform of he non-periodic signal x(): The Fourier ransform of he periodic signal is: Y ( k ) c y k T y ( ) π c δ( - k ) k k 88 44
45 The effec of signal s runcaion sin x() p ( ) π sin sinτ p p ˆ τ π π () ( ) ( ) + sin uτ sin uτ π u π u π ( ) ( ) Si( ) ˆ p u du du y Si τ( + ) Si τ( ) π π ˆ converges in mean square o p : ( ) ( ) ( ) F{ () τ ()} F{ ()} lim... x p x τ τ( + ) τ( )
46 The effec of he specrum s runcaion on he reconsruced signal sinτ Recangular pulse: x() pτ () ( ) ; sinτ Truncaed specrum from o : xˆ? p sin sinτ p ( ) and p ( ) τ π sin sinτ xˆ () pτ () p ( ) π sin p τ () Si ( + ) Si ( ) τ τ π π π Dualiy: () ˆ ( ) ( ) ( ) ( ) sin τ sin τ Si ( + τ) Si ( τ) π p ( ) p ( ) π π π So, xˆ 9 () Si ( + τ) Si ( τ) π π -- Truncaion in ime > Gibbs phenomenon in frequency Truncaion in frequency > Gibbs phenomenon in ime 9 46
47 Repariion Differen energy concenraion measures. The repariion of a random variable is described by is probabiliy densiy funcion f (x) : f ( x) and f ( x) dx i) Mean ii) Power μ E dx E{ } x f ( x) dx; { } xf ( x) ; iii) Variance { } ( ) μ ( ) { } ( μ ) Var E x f x dx iv) Sandard deviaion ( ) σ Var. 93 Example: Gaussian (normal) repariion ( x μ ) σ f ( ) x e πσ μ -mean σ -sandard deviaion πσ μ,σ e ( x μ ) σ x e dx π dx 94 47
48 Signal energy s disribuion in ime The energy of a signal x() : W x() d x() energy disribuion funcion, in ime. W - Average ime c - he energy of he signal is concenraed wih he dispersion of σ ime spreading x c x () () d d ( ) c x( ) σ x () d d 95 Signal energy s disribuion in frequency The energy of signal x(), specrum (): W ( ) d π ( ) energy disribuion funcion, in frequency. W Average frequency c -he energy of he signal is concenraed wih dispersion of σ frequency spreading, ( ) d c ( ) d σ ( ) c ( ) ( ) d d 96 48
49 The Heisenberg-Gabor uncerainy principle If σ and σ can be defined, hen for any signal we have: σσ The sign equal appears if and only if is a Gaussian signal. x( ) -here are no signals wih perfec concenraion of energy in he ime-frequency plane 97 Example: Gaussian signal a π 4a x () e ( ) e a c ; σ ; c σ a 4a The produc σσ. The Heisenberg-Gabor inequaliy is saisfied wih he equal sign
50 The energy in he (ime) inerval [ σ σ ] 3 a a π W6 σ W6 σ e d % a W 3 a The energy in he bandwidh π W π a a W 3 a π a W6 σ e d 3 a,3σ 3 3 3,3, a a 6σ.9974 ; 99.74% 3 Signal duraion T ; is bandwidh B 3 a a produc duraion-bandwidh TB 9 for 99.74%energy 99 Remarks: i)inerpreaion of Heisenberg-Gabor inequaliy σσ If he signal duraion σ increases bandwidh σ decreases. Example: he ime-scaling propery. For a fixed duraion, he specral sandard deviaion is C σ σ σ Beween all he signals wih he same duraion, he Gaussian one has minimum bandwidh. Reciprocically, beween all he signals wih he same bandwidh, he Gaussian one has minimum duraion. The Gaussian signal is ideal for elecommunicaions ransmission: a an imposed bandwidh i offers he highes ransmission speed. Someimes, he values σ and σ can be compued. 5
51 ii) The signal () x e σ () ( ) + j ( ) x () d ; W x () d ( ) ( ) C e d ; 3 8 σ () σ ( ) d d arcg d ( ) (even funcion) σ C ; + d σ can' be defined + ( ) 5
52 For : W 995, W B he duraionbandwidh produc is 3. A he same duraion he recangular pulse has a smaller bandwidh han he exponenial. 3 Special problems regarding signals i) Band-limied signals The band-limied signals have infinie duraion. They respec he Bernsein s heorem. A band-limied signal bounded by M has all he derivaives bounded : ( k x ) () M k M - signal wih slow variaion. 4 5
53 5 ii) Causal Signals and he Paley-Wiener Theorem The signal x() is causal if and only if he inegral: ( ) log I d + is convergen. The specrum can be zero, in a counable se of poins, having a null Lebesque measure. The causal signals are non band-limied. 6 53
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
HMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
The canonical 2nd order transfer function is expressed as. (ω n
Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
On Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
Femtosecond laser pulses
Femosecon laser pulses Inroucion on femosecon lasers Numerical analysis Compuer conrolle experimens Lab wor Pulse shaping Femosecon laser pulses : lab wor Time omain eraher specroscopy Specral inerferomery
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ