LAD Estimation for Time Series Models With Finite and Infinite Variance

Σχετικά έγγραφα
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Homework for 1/27 Due 2/5

4.6 Autoregressive Moving Average Model ARMA(1,1)

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Other Test Constructions: Likelihood Ratio & Bayes Tests

Matrices and Determinants

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Statistical Inference I Locally most powerful tests

Example Sheet 3 Solutions

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

2 Composition. Invertible Mappings

1. For each of the following power series, find the interval of convergence and the radius of convergence:

6. MAXIMUM LIKELIHOOD ESTIMATION

Outline. Detection Theory. Background. Background (Cont.)

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Durbin-Levinson recursive method

Solutions: Homework 3

Exam Statistics 6 th September 2017 Solution

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solve the difference equation

Asymptotic distribution of MLE

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

F19MC2 Solutions 9 Complex Analysis

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

w o = R 1 p. (1) R = p =. = 1

ST5224: Advanced Statistical Theory II

Inverse trigonometric functions & General Solution of Trigonometric Equations

Introduction to the ML Estimation of ARMA processes

6.3 Forecasting ARMA processes

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

EN40: Dynamics and Vibrations

Lecture 3: Asymptotic Normality of M-estimators

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Every set of first-order formulas is equivalent to an independent set

Module 5. February 14, h 0min

A Note on Intuitionistic Fuzzy. Equivalence Relation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Lecture 26: Circular domains

p n r

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

Approximation of distance between locations on earth given by latitude and longitude

EE101: Resonance in RLC circuits

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 8.3 Trigonometric Equations

Fractional Colorings and Zykov Products of graphs

Abstract Storage Devices

Μηχανική Μάθηση Hypothesis Testing

The Equivalence Theorem in Optimal Design

Numerical Analysis FMN011

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Lecture 21: Properties and robustness of LSE

Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,...

EE512: Error Control Coding

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Concrete Mathematics Exercises from 30 September 2016

The Simply Typed Lambda Calculus

Section 7.6 Double and Half Angle Formulas

Solution Series 9. i=1 x i and i=1 x i.


Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Solutions to Exercise Sheet 5

Uniform Convergence of Fourier Series Michael Taylor

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

( ) 2 and compare to M.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Congruence Classes of Invertible Matrices of Order 3 over F 2

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

On Inclusion Relation of Absolute Summability

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

New bounds for spherical two-distance sets and equiangular lines

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

On Generating Relations of Some Triple. Hypergeometric Functions

TMA4115 Matematikk 3

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Stationary Univariate Time Series Models 1

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Reminders: linear functions

The Pohozaev identity for the fractional Laplacian

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

The ε-pseudospectrum of a Matrix

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

5. Choice under Uncertainty

( y) Partial Differential Equations

ECON 381 SC ASSIGNMENT 2

Transcript:

LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1

LAD Estimatio for ARMA Moels fiite variace ifiite variace A Real Data Example LAD estimatio uit root problem 2

Αsymptotics i No-staar Settigs (Whe Taylor series expasios o ot work.) Applicatios to: LAD estimatio (Pollar `91, Davis a Dusmuir `95) M-estimatio with ifiite variace (Davis, Kight a Liu `92, Davis `95) Uit root problems (AR + MA) (Davis a Dusmuir `95, Davis, Che a Dusmuir `95) 3

Εxample (The meia). Data. Z 1,..., Z, IID meia 0 a pf f(0) > 0. Meia. m = meia(z 1,..., Z ) Asymptotics: Note: m (assume m 0 = populatio meia = 0) m is AN(0,??) miimizes T (m) = ( Z t m Z t ) 4

Set u= 1/2 m a put The S (u ) = T (u -1/2 ) u = 1/2 m. Usig the key ietity, we have t = 1 = ( Z t u -1/2 Z t ). z-y - z = -y sg(z) + 2(y-z) (I(0<z<y) - I(y<z<0)), S (u) = u -1/2 sg(z t ) + 2 ( -1/2 u-z t ){ I(0< Z t < -1/2 u)- I( -1/2 u<z t <0)} 5

S (u) = u -1/2 sg(z t ) + 2 ( -1/2 u-z t ){ I(0< Z t < -1/2 u) I( -1/2 u<z t <0)} = : A +B Results: A -un, N ~ N(0,1) (CLT) EB = 2E( -1/2 u-z t ) I(0< Z t < -1/2 u) (for u>0) -1/2 u = 2 ( -1/2 u z) F(z) 0-1/2 u ~ 2 ( -1/2 u z) f(0)z = u 2 f(0). 0 6

Coclue : A B P -un u 2 f(0) S (u) S(u):= un + u 2 f(0) [o C( R) ] u = 1/2 m u := miimizer of S(u). Solve S'(u) = N + 2 u f(0) = 0, we obtai u = N/(2f(0)) ~ N(0,1/(4f 2 (0))) or 1/2 m N(0,1/(4f 2 (0))) 7

The Paraigm: Objective fuctio to be miimize: T (θ) Reparameterize by settig u = a (θ θ 0 ) θ 0 = true value, a = scalig Form ew objective fuctio: S (u) = T (θ 0 +u/a ) Establish weak covergece of S (u) to S(u) o C(R) R). Show u = a (θ θ 0 ) u:= argmi S(u) 8

8 Theorem. Let {Y t } be the liear process Y t = c j Z t-j, c j <, where {Z t }~IID(0,σ 2 ), meia(z 1 )=0, a f(0)>0. The S := ( Z t - -1/2 Y t-1 - Z t ) j= 0 j= 0 γ f(0) + N, where N ~ N(0, γ) (γ = Var(Y t )). Key ietity: z-y - z = -y sg(z) + 2(y-z) (I(0<z<y) - I(y<z<0)) 9

Usig the key ietity, z-y - z = -y sg(z) + 2(y-z) (I(0<z<y) - I(y<z<0)), we have S = -1/2 Y t-1 sg(z t ) + 2 ( -1/2 Y t-1 -Z t ){ I(0< Z t < -1/2 Y t-1 )- I( -1/2 Y t-1 <Z t <0)} = : A + B Result: A N (MG CLT) B P γ f(0) (Ergoic Theorem) 10

Results : A un 1 v N 2, (N 1,N 2 ) T ~ N( )., 0 1 EX 1 0 EX 1 EX 1 2 EB B P EY 1 2 f(0) = (u,v) (u,v) T f(0). (u,v) (u,v) T f(0). Coclue : S (u,v) un 1 v N 2 + (u,v) (u,v) T f(0). (u,v ) T -1 (N 1,N 2 ) T / 2f(0) ~ N(0, -1 / 4f 2 (0)) ( 1/2 (µ µ 0 ), 1/2 (φ φ 0 )) T N(0, -1 / 4f 2 (0)) 11

Εxample (AR(1)). Data. X 1,..., X Moel. X t = µ 0 + φ 0 X t-1 +Z t, LAD estimatio: Miimize φ 0 < 1, {Z t } ~ IID(0,σ 2 ), f(0)>0. T (µ,φ) = ( X t µ φx t-1 Z t ) = ( Z t (µ µ 0 ) (φ φ 0 )X t-1 Z t ) Set u= 1/2 (µ µ 0 ), v= 1/2 (φ φ 0 ), S (u,v) = ( Z t u -1/2 v -1/2 X t-1 Z t ) 12

S (u,v) = ( Z t u -1/2 v -1/2 X t-1 Z t ) = ( Z t -1/2 Y t-1 Z t ) ( -1/2 Y t-1 = u -1/2 + v -1/2 X t-1 ) = - -1/2 Y t-1 sg(z t ) + 2 ( -1/2 Y t-1 -Z t ){ I(0< Z t < -1/2 Y t-1 )- I( -1/2 Y t-1 <Z t <0)} = : A + B 13

Results : A un 1 v N 2, (N 1,N 2 ) T ~ N( )., 0 1 EX 1 0 EX 1 EX 1 2 EB B P EY 1 2 f(0) = (u,v) (u,v) T f(0). (u,v) (u,v) T f(0). Coclue : S (u,v) un 1 v N 2 + (u,v) (u,v) T f(0). (u,v ) T -1 (N 1,N 2 ) T / 2f(0) ~ N(0, -1 / 4f 2 (0)) ( 1/2 (µ µ 0 ), 1/2 (φ φ 0 )) T N(0, -1 / 4f 2 (0)) 14

Εxample (MA(1)). Data. X 1,..., X Moel. X t = Z t + θ Z t-1, LAD estimatio: θ 0 < 1, {Z t } ~ IID(0,σ 2 ), f(0)>0. Miimize T (θ) = ( Z t (θ) - Z t (θ 0 ) ) Set u= 1/2 (θ θ 0 ), = ( X t θx t-1 +θ 2 X t-2 -... (-θ) t-1 X 1 - Z t (θ 0 ) ) 15

S (u) = T (θ 0 + u -1/2 ) = ( Z t (θ 0 + u -1/2 ) - Z t (θ 0 ) ) (Not a covex fuctio of u!) Liearize Z t (θ 0 + u -1/2 ) to get S (u) ( Z t (θ 0 ) + u -1/2 Z t ' (θ 0 ) - Z t (θ 0 ) ) where -Z t ' (θ 0 ) is the AR(1) process Y t = θ 0 Y t-1 +Z t. Result : Same limit result as i the AR(1) case, i.e. 1/2 (θ LAD θ 0 ) N / (Var(Y t )2f(0)) ~ N(0, (1-θ 2 ) / (σ 2 4f 2 (0))) 16

Liearize Versio : Iitial estimate : θ 0 = θ 0 + O p ( -1/2 ) Objective Fuctio: The T (θ) = ( Z t (θ 0 ) + Z' t (θ 0 )(θ θ 0 ) - Z t (θ 0 ) ). 1/2 (θ L θ 0 ) N(0, (1-θ 2 ) / (4f 2 (0))), where θ L = argmi T (θ) 17

Extesios : ARMA Moel : φ(b)x t = θ(b)z t, {Z t } ~ IID(0,σ 2 ), f(0)>0. Set β = (φ 1,..., φ p, θ 1,..., θ q ) T a The v = 1/2 (β β 0 ) (i) S (v ) := ( Z t (β 0 + v -1/2 ) - Z t (β 0 ) ) f(0)v T Γ Q -1/2 v + v T N, N~N( 0, Γ Q ), (i C(R p+q )) (ii) v LAD = 1/2 (β LAD β 0 ) Γ -1 Q N/(2f(0)) ~ N(0, Γ Q -1 /(4f 2 (0))) Note: Γ Q -1 σ 2 is the limitig covariace matrix i Gaussia case. 18

ARMA Moel With Stable Noise: (Davis, Kight a Liu `92 for AR case, Davis `95 for ARMA.) Moel: φ(b)x t = θ(b)z t, {Z t } ~ IID symmetric stable(α), 0<α < 2. 1/α (β LAD β 0 ) W I this case both A a B have raom limits! Least squares estimates: ( / l ) 1/α (β LS β 0 ) V Simulatio results: Cauchy oise LS LAD AR(1) φ=.4.395(.041).399(.015) MA(1) θ=.8.795(.049).794(.036) ARMA(1,1) φ=.4.399(.053).399(.026) θ=.8.781(.046).781(.033) 19

Liear Regressio with ARMA Errors : Moel : Y t = A T t α + X t, where {X t } follows a ARMA process φ(b)x t = θ(b)z t, {Z t } ~ IID(0,σ 2 ), f(0)>0. Assume A T t = (a 1t,..., a rt ) T satisfies Greaer s coitios: (a) a j /b j 0 (b) (c) B -1 A t A t+j T B -1 Γ A (j) b j P P8 where b j 2 = A t 2 a B = iag(b 1t,..., b rt ). P 20

Estimatio: Let X t (α) = 0, if t < 1, Y t A t T α, if t > 0, a for τ Τ =( α Τ, β Τ ), efie Z t (τ) =... 0, if t < 1, φ(b)x t (α) θ 1 Z t-1 (τ) θ q Z t-q (τ), if t > 0, Miimize S ( u, v) = ( Z t (τ 0 + (u,v)) - Z t (τ 0 ) ) where (u,v) = ( (B -1 u) T, -1/2 v T ) T. 21

Result : S ( u, v) S ( u, v) o C(R p+q+r ) B (α LAD α 0 ), 1/2 (β LAD β 0 ) Γ 1 N /(2f(0)) ~ N(0, Γ -1 /(4f 2 (0))), where a Γ = Γ C 0 0 T Γ Q j, k Γ C = π j π k Γ A (j-k), π(b) = θ 0 (B) / φ 0 (B). 22

A Example : (overshorts Y 1,..., Y 57 storage tak.) from uergrou (gallos) -100-50 0 50 100 0 10 20 30 40 50 ACF -0.5 0.0 0.5 1.0 0 5 10 15 20 Lag 23

Moel. Y t = µ + Z t +θz t-1 Problem. Estimate µ a costruct a C.I.? (Is µ < -5 gallos/ay?) Estimatio. Estimates Asymptotic Var µ MLE = 4.87 (1+θ) 2 σ 2 / = (1.408) 2 θ MLE =.849 (1 θ 2 )/ = (.070) 2 µ LAD = -6.01 (1+θ) 2 /(4f 2 (0)) = (2.236) 2 θ LAD =.673 (1 θ 2 ) / (σ 2 4(f 2 (0))) = (.106) 2 24

Uit Root. If θ=1, the µ MLE is AN(µ 0, 12σ 2 / 3 ) (if θ is ot estimate) µ MLE is asymptotically o-ormal (if θ is estimate) Asymptotic istributio of µ LAD a θ LAD whe θ = 1? 25