Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics

Σχετικά έγγραφα
The one-dimensional periodic Schrödinger equation

New symmetries of Black-Scholes equation

CNS.1 Compressible Navier-Stokes Time Averaged

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Homework 8 Model Solution Section

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

IV и. е ые и Си АДИ, ы 5 (51),

( y) Partial Differential Equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Second Order Partial Differential Equations

EE512: Error Control Coding

α & β spatial orbitals in

Multi-dimensional Central Limit Theorem

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

On homeomorphisms and C 1 maps

D-Wave D-Wave Systems Inc.

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

A Class of Orthohomological Triangles

derivation of the Laplacian from rectangular to spherical coordinates

The challenges of non-stable predicates

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Uniform Convergence of Fourier Series Michael Taylor

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.


DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

EE101: Resonance in RLC circuits

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Inverse trigonometric functions & General Solution of Trigonometric Equations

Example Sheet 3 Solutions

ST5224: Advanced Statistical Theory II

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

The Simply Typed Lambda Calculus

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Fourier Transform. Fourier Transform

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Durbin-Levinson recursive method

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Second Order RLC Filters

An Inventory of Continuous Distributions

Every set of first-order formulas is equivalent to an independent set

Approximation of distance between locations on earth given by latitude and longitude

2 Composition. Invertible Mappings

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Reflection Models. Reflection Models

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SPECIAL FUNCTIONS and POLYNOMIALS

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS 4

Matrices and Determinants

D Alembert s Solution to the Wave Equation

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Rektangulär fläns, Rectangular fin

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

(b) flat (continuous) fins on an array of tubes

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Finite Field Problems: Solutions

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Lecture 12 Modulation and Sampling

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Commutative Monoids in Intuitionistic Fuzzy Sets

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Review Exercises for Chapter 7

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

Areas and Lengths in Polar Coordinates

Space-Time Symmetries

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Section 8.3 Trigonometric Equations

Example 1: THE ELECTRIC DIPOLE

Α Ρ Ι Θ Μ Ο Σ : 6.913

Finite difference method for 2-D heat equation

Fourier Series. Fourier Series

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

C.S. 430 Assignment 6, Sample Solutions

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Transcript:

Geomery Inegrably and Qazaon Jne 8-8 7 Fndng Le Symmeres of PDEs wh MTHEMTIC: lcaons o Nonlnear Fber Ocs Vladmr Plov Dearmen of Physcs Techncal Unversy-Varna lgara Ivan Uznov Dearmen of led Physcs Techncal Unversy-Sofa lgara Eddy Chacarov Dearmen of Informacs and Mahemacs Varna Free Unversy lgara

Plan of Presenaon. MTHEMTIC ackage for fndng Le symmeres of PDE.. lock-scheme and algorhm.. In and o.. Tracng he evalaon.4. Tral rn. lcaons o nonlnear fber ocs.. Physcal model.. Resls obaned. Conclson

F Sysem of PDE ( ) ( n) (... ) k K l ( Δ) k G r Symmery Gro of Δ r { T a Ω R Ω } a MTHEMTIC r Creang Defnng Sysem [ F( z )] ( n) ( n ) for Solvng Defnng Sysem ( ) η η ( ) ξ ξ z ( n) Δ F Solvng he Le Eaon df ξ da dϕ η da ( f ϕ ) f a ( f ϕ ) ϕ a asc Infnesmal Generaors ν ξν ( ) η ( ) ν

Le Gro of Symmery Transformaons F G ( ) ( n) (... ) k K l k { T a δ δ } R a ( Δ) Each solon of Δ afer ransformaon of he gro G remans a solon of Δ. f ( ) T a ( ) f If f s a solon of Δ hen f T f s also a solon of Δ. a

The sysem of PDE and he Prolonged Sace F () ( n) (... ) k K l k ( Δ) ( ) R (... ) R... ( s )... ; k... ; k... s... s... s z Z R R z n ( ) Z ( n) ( ) ( ) ( n)... Z ( n) h s he n rolongaon of he sace Z Δ F ( n) ( n) ( n) ( n) { z Z F( z ) } Z n The sysem Δ s consdered as a sb-manfold n he rolonged sace Z. Δ F ( )

rolongaon of he Infnesmal Generaor h n ( ) n n n n r ς ς K K K L ( ) ( ) s s s D D ξ η ς ( ) ( ) s s s k k k k k D D ξ ς ς K K K n n n D K K K L ( ) ( ) η ξ

The Infnesmal Creron and he Defnng Sysem ξ ( ) η ( ) r ( n) ς L K ς K n n K n G s a Le gro of symmery ransformaons of he sysem of PDE Δ wh he nfnesmal generaor. The nfnesmal creron holds. r [ F( z )] ( n) ( n ) for z ( n) Δ F Defnng Sysem

F Sysem of PDE ( ) ( n) (... ) k K l ( Δ) k G r Symmery Gro of Δ r { T a Ω R Ω } a MTHEMTIC r Creang Defnng Sysem [ F( z )] ( n) ( n ) for Solvng Defnng Sysem ( ) η η ( ) ξ ξ z ( n) Δ F Solvng he Le Eaon df ξ da dϕ η da ( f ϕ ) f a ( f ϕ ) ϕ a asc Infnesmal Generaors ν ξν ( ) η ( ) ν

Daa In M T H E M T I C asc Se Solvers lock Evalen Transformaons lock Creang Defnng Sysem Solvng Procedre leas one eaon has been solved. False Tre Daa O

PDE ndvar devar derv { F K F } l { K } { K } { } K s Daa In Daa In s daa abo he consdered PDE.

asc Se-U LHS { } F K F l Man InfGen Δ F { ξ ( ) K ξ ( ) K η ( ) K η ( ) } ProlGen n r (InfGen) { ξ ( ) K ξ ( ) K η ( ) K η ( ) } are nknown fncons ha are o be deermned and gven a he ackage o as solons of he defnng sysem.

Creang Defnng Sysem Infnesmal Creron Defnng Sysem Defnng Sysem s he maor obec n he rogram. Defnng Sysem s creaed by alyng he nfnesmal creron InfGen (LHS) Man. Defnng Sysem consss of lnear aral dfferenal eaons.

Solvng Procedre Transformng Defnng Sysem Solvng Defnng Sysem Solvers lock Evalen Transformaons lock Hns leas one eaon has been solved. False Tre Daa O

Evalen Transformaons lock Modle- for addng and sbracng of wo eaons Modle- for dfferenang of he eaons Modle-4 for breakng he eaons no ars The block s oen for addng new modles of evalen ransformaons.

Solvers lock Modle- C C solver of Modle- solver of C C y Modle- solver of C y C Modle-4 solver of C y C Modle-5 solver of C y C The block s oen for addng new modles for solvng eaons.

ser level commands Ineracve Mode

Hea Eaon In LeInfGeneraor {[]} {[ ]} { } {} { nfgen nfgen } { nfgen } ] O {nfgen c[] c[4] c[5] c[] nfgen c[4] c[5] - c[6] } {nfgen - c[4] - c[4] - c[4] - c[] [ ] } f { ( ) [ ] - ( ) [ ] } f f

Tracng he Evalaon Hea eaon C C y C C C y C C C y C y C

Tracng he Evalaon C C C C y C y C Coled Nonlnear Schrödnger Eaons ( h ) ( h ) Lengh of Solved Sysem

Tral Rn Hea eaon 4 5 6 4 4 ( ) ( ) ( ) s an arbrary solon of he Hea Eaon

Tral Rn KdV eaon sace ranslaon ( ) f ( ) me ranslaon ( ) f ( ) Gallean boos ( ) f ( ) 4 dlaon ( 4) ( e f e e ) ( ) f s an arbrary solon of he KdV Eaon R s he gro arameer

References [] Schwarz F. Comng 4 (985) 9. [] amann G. Mah. Com. Smlaon 48 (998) 5. [] amann G. Le Symmeres of Dfferenal eaons: a MTHEMTIC Program o Deermne Le Symmeres a www.lbrary.wolfram.com/nfocener/mahsorce/4.

lcaon o Fber Ocs (hyscal model) Coled Nonlnear Schrödnger Eaons (CNSEs) σ θ θ γ σ θ θ γ ν weak brefrngen fbers wo-mode fbers srong brefrngen fbers Raman gan coeffcen σ γ σ γ σ θ

Le Gro nalyss Coled nonlnear Schrödnger eaons ν ( γ ) ( γ ) wo mode γ ocal fber srong brefrngen γ gro velocy dserson dmed Le on symmeres ( ) ς e( β ) z e negave ν osve ν gros algebras T a 4 T T T4 β a a β β a4 5 T 5 ν β a5 a5 a5 νa β β νa5 5 6 T 6 z z ( ) ( ) e a 6 e a z z e( a 6 ) ξ ξ e( a 6 ) ς ς 6

β 5 β 4 a a a 4 a β β a 5 a a 5 5 a a 5 5 β β gros gros algebras algebras T T 4 T T 5 T ( ) ( ) β ς z e e ( ) ( ) ( ) ( ) θ θ γ θ θ γ srong brefrngen fber γ srong brefrngen fber wh arallel Raman scaerng θ Le Gro nalyss Le Gro nalyss Coled nonlnear Schrödnger eaons dmed Le on symmeres

Le Gro nalyss Coled nonlnear Schrödnger eaons ( γ ) dmed Le on symmeres ( γ ) k k fber weak brefrngen γ k nonlnear dreconal coler γ k ( ) ς e( β ) z e gros algebras T a T T a a β β a T 4 4 β a4 a4 β β a4 a4 a4

SYMMETRY GROUP REDUCTION symmery gro adon reresenaons classfcaon omal se of sbalgebras omal se of redced ODEs omal se of gro nvaran solons

INTERIOR UTOMORPHISMS wo mode fbers srong brefrngen fbers ν ( γ ) ( γ ) ( ) 4 5 6 4 5 6 ( ) ( ) ( ) ( ) ( ) ( ) ( ν ) 4 e ( ν ) 4 e 4 4 4 4 4 4 ( ν ) 5 4 5 5 5 5 e 5 6 6 6 6 6 5 6 ( ) [ ] [ [ ] L

OPTIML SET OF SULGERS OPTIML SET OF SULGERS Case Case C Case ( ) β ν 5 4 β δ δ 4 Case D ( ) β ν δ δ 5 4 Case E β δ ς ς δ z z 6 4 Case F β δ δ 4 ± ± R ± ± δ or R ± δ R δ or δ δ R wo mode fbers wo mode fbers srong brefrngen fbers srong brefrngen fbers ( ) ( ) γ ν γ

σ σ Nonlnear dreconal coler Nonlnear dreconal coler Redced sysem Redced sysem ( ) ( ) ( ) ( ) g f gf f g f g f f g cos cos sn sn σ σ δ σ σ ( ) ( ) ( ) dn arcsn 4 e cn h E h E E σ σ ( ) ( ) ( ) dn arcsn 4 e cn h E h E E σ σ 4σ cons E h E Eac solon Eac solon Eac solon for Case

REDUCTION PROCES (Case C) wo mode fbers srong brefrngen fbers ν ( γ ) ( γ ) ( ) ς e( β ) z e Generaor δ δ β 4 ± or ± δ R Invarans J z ς J J J δ J 4 β New varables z ( ) ς ( ) f ( ) δ β g( ) Redced sysem f f g g ( f ) γ δ ( g ) ν ν γ ν

Eac solon for Case C (wo-mode fbers and srongly brefrngen fbers) ( ) Π m n b h C U λ ; e ( ) Π ± m n b h C U λ ; e ( ) ( ) cn U b b h b m b b λ λ ( ) ( ) [ ] dw m w n m n Π sn ; ± b b b n b b b b m are he roos of he olynomal b b b > > ( ) ( ) 4 h C h C h Q θ θ θ θ and are he Jacobean sne and cosne ellc fncons ( ) m sn ( ) m cn

romae vecor solary waves Srong brefrngen fbers wh Raman scaerng generalzed verson of revosly obaned scalar solary-wave solon c ( c a) ( c b) β ( a cy) ( b cy) yy yy C C ( h ) θ ( ) ( h ) θ ( ) y y y y Gallean-lke symmery redced sysem ( z) θ F( z) a sech sech z θ G( z) θ << Raman arameer a a a F 6 8 8 anh 5 5 5 ( z) z z ln( sech z) z ( z) snh z z G sech ( z) z G sech. L. Gagnon and P.. élanger Solon self-freency shf verss Gallean-lke symmery O. Le. Vol. 5 No. 9 (99). 466-468.

( z) θ F( z) a sech sech z θ G( z) a a a F 6 8 8 anh 5 5 5 ( z) z z ln( sech z) z ( z) snh z z G sech ( z) z G sech τ»».8.6 τ»» -6.5-6 τ»» 8-6 F ( z) G ( z) G ( z) 6-6.4. - - - z -6 5-7 - - - z 4-6 -6 - - - z. L. Gagnon and P.. élanger Solon self-freency shf verss Gallean-lke symmery O. Le. Vol. 5 No. 9 (99). 466-468.. N. khmedev and. nkewcz Novel solon saes and bfrcaon henomena n nonlnear fber colers Phys. Rev. Le. Vol. 7 No. 6 (99). 95-98.

LWS OF CONSERVTION Two-mode fbers and srong brefrngen fbers SYMMETRY LWS OF CONSERVTION TIME TRNSLTION SPCE TRNSLTION J J * * ( ) H - d ( ) ( ) 4 4 ν h d TRNSLTION OF THE PHSE J d TRNSLTION OF THE PHSE β J 4 d GLILEN-LIKE SYMMETRY J 5 ( ) ν d J

References [] Chrsodoldes D.N. and R.I. Joseh Ocs Le. () 5-55 (988). [] Trank M. V. and J. E. Se Phys. Rev. 8(4) -7 (988). [] Chrsodoldes D.N. Phys. Le. (8 9) 45-45 (988). [4] Floranczyk M. and R. Tremblay Phys. Le. 4() 4-6 (989). [5] Kosov N.. and I. M. Uznov O. Commn. 89 89-9 (99). [6] Floranczyk M. and R. Tremblay O. Commn. 9 45-49 (994). [7] Plov V. I. Uznov and E. Chacarov Phys. Rev E 57 () 468-477 (998).

Conclson The symbolc comaonal ools of MTHEMTIC have been aled o deermnng he Le symmeres of PDE. n algorhm for creang and solvng he defnng sysem of he symmery ransformaons has been develoed and mlemened n MTHEMTIC ackage. The ackage has been sccessflly aled o basc hyscal eaons from nonlnear fber ocs. Fre work: The ackage caables can be eended by addng new rogrammng modles for ransformng and solvng oher wder classes of dfferenal eaons.