Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Σχετικά έγγραφα
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

EN40: Dynamics and Vibrations

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

α β

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

IIT JEE (2013) (Trigonomtery 1) Solutions

Srednicki Chapter 55

Presentation of complex number in Cartesian and polar coordinate system

Second Order RLC Filters

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Lifting Entry (continued)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)


Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

1. For each of the following power series, find the interval of convergence and the radius of convergence:

ST5224: Advanced Statistical Theory II

Forced Pendulum Numerical approach

derivation of the Laplacian from rectangular to spherical coordinates

LAD Estimation for Time Series Models With Finite and Infinite Variance

Instruction Execution Times

Section 9.2 Polar Equations and Graphs

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

4. ELECTROCHEMISTRY - II

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Capacitors - Capacitance, Charge and Potential Difference

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solve the difference equation

Homework for 1/27 Due 2/5

C.S. 430 Assignment 6, Sample Solutions

[1] P Q. Fig. 3.1

Strain gauge and rosettes

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Statistical Inference I Locally most powerful tests

Derivation of Optical-Bloch Equations

Outline. Detection Theory. Background. Background (Cont.)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Thin Film Chip Resistors

Fourier Series. Fourier Series

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Ψηφιακή Επεξεργασία Εικόνας

Section 8.3 Trigonometric Equations

( ) Sine wave travelling to the right side

Example Sheet 3 Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Inertial Navigation Mechanization and Error Equations

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE 570: Location and Navigation

Areas and Lengths in Polar Coordinates

Calculating the propagation delay of coaxial cable

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Section 7.6 Double and Half Angle Formulas

Matrices and Determinants

The Simply Typed Lambda Calculus

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Reminders: linear functions

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Areas and Lengths in Polar Coordinates

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Assalamu `alaikum wr. wb.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DuPont Suva 95 Refrigerant

Inverse trigonometric functions & General Solution of Trigonometric Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

DuPont Suva 95 Refrigerant

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

EE512: Error Control Coding

2 Composition. Invertible Mappings

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Homework 4.1 Solutions Math 5110/6830

Spherical Coordinates

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

the total number of electrons passing through the lamp.

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

10.7 Performance of Second-Order System (Unit Step Response)

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

A Note on Intuitionistic Fuzzy. Equivalence Relation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Transcript:

SIMPLE DROP SHOCK Revisio D By Tom Irvie Email: tomirvie@aol.com November 10, 004 DERIVATION Cosier a sigle-egree-of-freeom system i a free-fall ue to gravity. &&x g m k Where m is the mass, k is the sprig stiffess, x is the absolute isplacemet of the mass, g is the gravitatioal acceleratio. Note that the ouble-ot eotes acceleratio. Assume 1. The object ca be moele as a sigle-egree-of-freeom system.. The object is roppe from rest. 3. There is o eergy issipatio. The collisio is perfectly elastic. 4. The object remais attache to the floor via the sprig after iitial cotact. 5. The object freely vibrates at its atural frequecy after cotact. 6. The system has a liear respose. The iitial velocity of the system as it strikes the grou ca be fou by equatig the chage i kietic eergy with the chage i potetial eergy. 1 mx& = mg h (1) 1

where h is the rop height. Diviig through by (m/), &x = g h () Thus, the iitial velocity whe the mass ecouters the floor is &x( 0) = g h (3) Furthermore, the iitial isplacemet is take as zero. x(0) = 0 (4) Assume a isplacemet equatio with costat coefficiets a a b. xt () = asi ω t + b cos ω t (5a) Equatio (5a) assumes oscillatio at the system s atural frequecy. Note that the atural frequecy i raias per time is ω = k m (5b) The zero isplacemet iitial coitio requires b = 0. Thus xt () = asi ω t (6) The velocity is xt &( ) = a ω cos ω t (7) Recall &x( 0) = g h (8) Thus a = g h ω (9)

Substitute equatio (9) ito (6). The resultig isplacemet is g h xt () = siω t ω (10) The velocity equatio is xt &( ) = g hcosω t (11) The acceleratio equatio is &&() xt = ω g hsiωt (1) The force trasmitte through the sprig f(t) is f(t) = kx (13) f (t) g h = k si ωt (14) ω Note that k= ω m (15) Substitute equatio (15) ito (14). ft () = ωm g hsiωt (16) The peak istataeous power flow is P = ω mg h (17) Equatio (17) is erive i Appeix A. The total impulse over a half-sie perio is I = m g h (18) Equatio (18) is erive i Appeix B. 3

The shock aalysis is oly cocere with the maximum values. These are summarize i Table 1. Table 1. Maximum Absolute Values Parameter Symbol Maximum Equivalet Form Displacemet x g h ω mg h k Velocity &x g h g h Acceleratio &&x ω g h gk h m Jerk & x& k ω g h g h m Trasmitte Force f mω g h mgk h Potetial Eergy of Sprig Kietic Eergy of Mass PE max KE max k g h ω k g h ω mg h mg h Peak Istataeous Power Flow Total Impulse over a Half-sie Perio P I ω mg h km g h m g h m g h The values i Table 1 emostrate that there are some traeoffs ivolve i esigig a object with respect to rop shock. 4

EXAMPLE Cosier a fixe rop height. Also cosier that the mass is fixe, but that the sprig stiffess is variable. The table values show that lowerig the stiffess reuces both the acceleratio a the force. A lower stiffess coul be achieve by aig isolator mouts or some cushioig material. O the other ha, lowerig stiffess also icreases isplacemet. This is acceptable as log as the system remais liear a oes ot bottom out. The isplacemet limit of the sprig is thus a practical costrait. CONCLUSION A simple metho for moelig rop shock was erive. The erivatio was base o a simplifie free-vibratio moel. A rigorous erivatio of the free-vibratio equatio is give i Appeix C. 5

APPENDIX A Agai, the mass uergoes free vibratio at its atural frequecy. The istataeous power flow is P(t) = f(t)v(t) (A-1) P(t) = [mω g h si ω t][ g h cos ω t] (A-) P(t) = mg hω si ωt cosωt (A-3) Apply a trigoometric ietity. P(t) = mg hω si ωt (A-4) By ispectio, the peak istataeous power flow occurs at Substitute (A-5) ito (A-4). π ω t = (A-5) t = π 4ω (A-6) Pmax = ωmg h (A-7) P max k = mg h (A-8) m P max = g h km (A-9) Note that the istataeous power flow chages irectio as the polarity chages with time i equatio (A-4). 6

APPENDIX B The total impulse over a half-sie uratio is π/ ω = [f (t)]t 0 I (B-1) π / ω I = [mω ω 0 g h si t] t (B-) I 1 / m g h cos t π ω = ω ω (B-3) ω 0 I = m g h [ 1 1] (B-4) I = m g h (B-5) 7

APPENDIX C FREE VIBRATION DERIVATION Cosier a sigle-egree-of-freeom system. &&x m k c Where m is the mass, c is the viscous ampig coefficiet, k is the stiffess, x is the absolute isplacemet of the mass, g is the gravitatioal acceleratio. Note that the ouble-ot eotes acceleratio. The free-boy iagram is m &&x k x cx& Summatio of forces i the vertical irectio F = mx && (C-1) 8

mx && = cx& kx (C-) mx && + cx& + kx = 0 (C-3) Divie through by m, && x + c & m x k + m x = 0 (C-4) By covetio, ( c/ m) = ξω ( k / m) = ω where ω is the atural frequecy i (raias/sec), ξ is the ampig ratio. By substitutio, && x + ξω x& + ω x = 0 (C-5) Now take the Laplace trasform. L {&& & x + x+ x} = L{ 0} ξω ω (C-6) s X() s sx( 0) x& ( 0) + ξωsx() s ξωx( 0) + ω Xs () = 0 (C-7) { ξω ω } { } { ξω} s + s+ X() s + 1 x&( 0) + s x( 0) = 0 (C-8) { + ξω + ω } = + { + ξω} s s X() s x& ( 0) s x( 0) (C-9) 9

{ ξω } x&( 0) + s+ x( 0) Xs () = s + ξωs+ ω (C-10) Cosier the eomiator of equatio (C-10), ( ) ( ) s + ξωs+ ω = s+ ξω + ω ξω (C-11) ( ) ( ) s + ξω s+ ω = s+ ξω + ω 1 ξ (C-1) Now efie the ampe atural frequecy, = ω 1 ξ (C-13) Substitute equatio (C-13) ito (C-1), ( ) s + ξωs+ ω = s+ ξω + ω (C-14) + { + ξω} ( s + ξω ) + ω x&( 0) s x( 0) Xs () = Xs () = ( s+ ξω) ( s ξω ) x + ( ξω) ( s + ξω ) + x( 0) &( 0) x( 0) + + + ω ω (C-15) (C-16) Xs () = ( s+ ξω) ( s ξω ) ( ξω ) x& ( 0) + x( 0) x( ) ω 0 + + + ω ( s + ξω) + ω (C-17) 10

Now take the iverse Laplace trasform usig staar tables. The resultig isplacemet is ( ξω ) x& ( 0) + x( 0) xt () = exp ( ξω t) [ x( 0)cos ] ( t) + si ( ω t) (C-18) { 0 [ 0 0 ] ( )} xt () = exp ( t ) [ x ()cos ] ( t ) x & ( ) ( ) x ( ) si 1 ξω ω ω + + ξω ω ω t (C-19) The velocity is ( ξω ){ [ 0 ] ( ) [ 0 ( ξω) 0 ] ( )} { 0 [ 0 0 ] ( )} xt &( ) = ξω exp t x( )cos t + x&( ) + x( ) si t ( ) [ ] ( ) ( ) + exp ξω t x( ) si t + x&( ) + ξω x( ) cos t (C-0) ( ) [ ] ( ) ( ) ξω [ ] ( ) xt &( ) = exp ( ξω t) ξω[ x()cos 0 ] ( t) + x&( 0) + ( ξω) x( 0) si t ω { 0 [ 0 0 ] ( )} + exp ξω t x( ) si t + x&( ) + ξω x( ) cos t (C-1) { 0 [ 0 0 ]} ( ) ( ) [ ] ( ) xt &( ) = exp ξω t ξω x() + x&( ) + ξω x( ) cos t ξω [ ] ( ) + exp ( ξω t) [ x( 0) ] + x& ( 0) + ( ξω) x( 0) si t (C-) 11

( ξω ){ 0 } ( ω ) xt &( ) = exp t x&( ) cos t ξω [ ] ( ) ξω + exp ( ξω t) x&( 0) [ x( 0) ] + ( ξω ) x( 0) si t (C-3) ( ξω ){ 0 } ( ω ) xt &( ) = exp t x&( ) cos t ξω + exp ( ξω t) x&( 0) + + ( ξω ) x( 0) si t ξω [ ] ( ) (C-4) ( ξω ){ 0 } ( ω ) xt &( ) = exp t x&( ) cos t ( ξω ) exp ( t) + x&( ) + + ξω ξω 0 ω x( 0) si t ω ( ω ) (C-5) ( ) &( ) exp ( ) &( )cos( ) ξω ξω xt = t x t + x&( ) ξω 0 ω 0 ω x( 0) si( ω t) + + (C-6) [ ] ( ) 1 xt &( ) = exp ( t) x&( )cos( t) ξω 0 ω ξωx& ( 0) + + ( ξω) x( 0) si t ω (C-7) 1

Asie [ ω ( ξω ) ] ( ξ ) ω ( ξω ) 1 + = + (C-8) [ ( ) ] ω + ξω = ω (C-9) xt &( ) = exp ( ξω t) x&( )cos( t) { x&( ) + x( )} si( t) 0 1 ω ω ξω 0 ω 0 ω (C-30) xt &( ) = exp ( ξω t) x&( )cos( t) { x&( ) + x( )} si( t) 0 ω ω ω ξ 0 ω 0 ω (C-31) The acceleratio is ξω &&() xt = exp ( ξω t) ξωx& ( 0)cos ( t) + { ξx&( 0) + ωx( 0) } si( t) { } ( ξω t) ω x 0 ( ω t) ω { ξx 0 ω x 0 } ( ω t) + exp &( )si &( ) + ( ) cos (C-3) { } ( ξω ) ξω 0 ( ω ) ω { ξ 0 ω 0 } ( ω ) &&() xt = exp t x&( )cos t x& ( ) + x( ) cos t ξω + exp &( )si + & ( ) + ( ) si ( ξω t) ω x 0 ( ω t) { ξx 0 ω x 0 } ( ω t) (C-33) 13

{ } ( ) ( ) 0 { 0 0 } &&() xt = exp ξω t ξω x&( ) ω ξx& ( ) + ω x( ) cos ω t ξω + exp &( ) + &( ) + ( ) si ( ξω t) ω x 0 { ξx 0 ω x 0 } ( ω t) (C-34) ( ξω ){ ξω 0 ω ξ 0 ω 0 } ( ω ) &&() xt = exp t x&( ) x&( ) x( ) cos t ξ ω ξω 3 + exp &( ) + &( ) + ( ) si ( ξω t) ω x 0 x 0 x 0 ( ω t) (C-35) ( ξω ){ ξω 0 ω 0 } ( ω ) &&() xt = exp t x&( ) x( ) cos t ξ ω ξω 3 + exp & ( ) ( ) si ω ( ξω t) ω x 0 + x 0 ( ω t) (C-36) ( ξω ){ ω }{ ξ 0 ω 0 } ( ω ) &&() xt = exp t x&( ) x( ) cos t 1 ( ξω t) { [ ξ ω ω ] x 0 + ξω 3 x 0 } ( t) + exp &( ) ( ) si (C-37) Furthermore [ ( ) ] ω + ξω = ( ξ ) ω + ( ξω ) [ ( ) ] ω + ξω = ( + ξ ) ω + ( ξω ) 1 (C-38) [ + ( ) ] = ( + ) 1 (C-39) ω ξω 1 ξ ω (C-40) 14

By substitutio, ( ξω ){ ω }{ ξ 0 ω 0 } ( ω ) &&() xt = exp t x&( ) x( ) cos t 1 ( ξω ) ( ) {[ 1+ ξ ω ] 0 + ξω 3 0 } ( ) + exp t x&( ) x( ) si t (C-41) ( ξω ){ ω }{ ξ 0 ω 0 } ( ω ) &&() xt = exp t x& ( ) x( ) cos t ω ( ξω t) { [ 1 ξ ] x 0 ξωx 0 } ( t) + exp &( ) ( ) si ω + + (C-4) &&() xt = ( t) { x x } ( t) + ω 0 0 {[ 1+ ξ ] x 0 + ξωx 0 } ( t) ω exp ξω ξ&( ) ω ( ) cos & ( ) ( ) si (C-43) 15