The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Σχετικά έγγραφα
Self-Gravitating Lattice Gas

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

DATA SHEET Surface mount NTC thermistors. BCcomponents

for fracture orientation and fracture density on physical model data

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

IV. ANHANG 179. Anhang 178

Cosmological Space-Times

1Mpc 1 (Galaxy Clusters) X X 1Mpc cm 2009

Summary of the model specified

Statistical Inference I Locally most powerful tests

Audio Engineering Society. Convention Paper. Presented at the 120th Convention 2006 May Paris, France

NonEquilibrium Thermodynamics of Flowing Systems: 2

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

ﺓﺭﻫﺎﻘﻟﺍ ﺔﻌﻤﺎﺠ ﺔﻴﺴﺎﻴﺴﻟﺍ ﻡﻭﻠﻌﻟﺍﻭ ﺩﺎﺼﺘﻗﻹﺍ ﺔﻴﻠﻜ ﺀﺎﺼﺤﻹﺍ ﻡﺴﻗ

Alterazioni del sistema cardiovascolare nel volo spaziale

On the Einstein-Euler Equations

Markov chains model reduction

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Electronic Supplementary Information (ESI)

Spherical Coordinates

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Consolidated Drained

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Graded Refractive-Index

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed


ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Κοσμολογία: Ο κλάδος της Φυσικής που ασχολείται με τη μελέτη του Σύμπαντος ως σύνολο.

UV fixed-point structure of the 3d Thirring model

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

MATHACHij = γ00 + u0j + rij

m i N 1 F i = j i F ij + F x

AdS black disk model for small-x DIS

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Free Energy and Phase equilibria

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

6. MAXIMUM LIKELIHOOD ESTIMATION

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Biostatistics for Health Sciences Review Sheet

Large β 0 corrections to the energy levels and wave function at N 3 LO

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Solar Neutrinos: Fluxes

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

RS306 High Speed Fuse for Semiconductor Protection

Low Frequency Plasma Conductivity in the Average-Atom Approximation

What happens when two or more waves overlap in a certain region of space at the same time?

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

Thermodynamics of the motility-induced phase separation

SPECIAL FUNCTIONS and POLYNOMIALS

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Supporting Information

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ


ECE 468: Digital Image Processing. Lecture 8

:JEL. F 15, F 13, C 51, C 33, C 13

High order interpolation function for surface contact problem

Figure 1 - Plan of the Location of the Piles and in Situ Tests

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Lifting Entry (continued)

5.1 logistic regresssion Chris Parrish July 3, 2016

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Dark matter from Dark Energy-Baryonic Matter Couplings

Water Supply Project Midlands and Eastern Re ion. (WSP) Economic Needs Report

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Weak Lensing Tomography

Tsunami Runup and Inundation Simulation in Malaysia Including the Role of Mangroves

FORMULAS FOR STATISTICS 1

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Wavelet based matrix compression for boundary integral equations on complex geometries

ΚΑΤΑΝΟΜΗ BOLTZMANN ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

ISM 900 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3012

Eulerian Simulation of Large Deformations


C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

d 1 d 1

Bayesian SEM: A more flexible representation of substantive theory Web tables

Transcript:

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan Gottlöber, Anatoly Klypin, Yehuda Hoffman

Outline Motivation DM density profile/anisotropy profile Model of the phase-space density: brief description Tests on mock kinematic data Application to nearby galaxy clusters Summary/Perspective for future

Motivation 4 3 2 v los [ 3 km/s] - -2-3 -4.5.5 2 2.5 R [Mpc] no data binning f los (R, v los ) ρ DM (r), β(r) breaking M β degeneracy

DM density profile 3 2 ρ r - r s =r v /c ρ(r) [ 4 M /Mpc 3 ] - ρ r -2 ρ r -3-2.. r/r v ρ NFW (r) (r/r s )(+r/r s ) 2

Anisotropy profile.5 β.3... r/r s β(r) = σ2 θ (r) σ 2 r(r)

Model of the phase-space density

f(r,v) spherical symmetry: f(r,v) = f(e, L) st component: ρ(r) f(e, L) 2nd component: β(r) f(e,l) β(r) = σ2 θ (r) σ 2 r(r) : radially-biased model : isotropic dispersion tensor : tangentially-biased model

History β(r) = β(r) = const. β(r) = r2 r 2 +r 2 a β(r) = r2 αr 2 a r 2 +r 2 a Eddington (96) Hénon (973) Osipkov (979), Merritt (985) Cuddeford (99) f(e, L) = f E (E)( + L 2 /(2L 2 )) β Cuddeford & Louis (995)

f L (L).5 r v Free parameters: β.3 r tran β β = lim r β(r) β = lim r β(r).. β. r/r s β(r tran ) β +β 2 f L (L) { L 2β for L L L 2β for L L, ansatz:f L (L) = ( + L2 2L 2 ) β +β L 2β

f E (E) f E (E) n gal (r) ρ DM (r) Ψ(r) n gal (r) ρ DM (r) ρ DM (r/r s )(+r/r s ) 2 n gal (r) = f E (E)f L (L)d 3 v n gal (r) = Ψ(r) f E (E)K(E, Ψ(r))dE n gal,i = j K i,jf E (Ψ j ) Wojtak et al. 28

The shape of β(r) profile.5 DF model α= α=2 α=.5.3 β. r /4 β(r)=.5r α /(r α +r /4 α ).. r/r s

Comparison with the simulation

f(e, L) from the simulation L/L s - r p >r v r p <r v <r a L max (E) r a <r v L/L s - -3-2 L max (E) - -2-2..3.5.7.9 2 E/V s N(E, L) = d2 M dedl..3.5.7.9 2 E/V s f(e, L) = N(E,L) g(e,l) g(e, L) = δ( 2 v2 Ψ(r) E)δ( r v L)d 3 rd 3 v

Comparison: f(e, L) β.7.5.3.. -... r/r s f(e,l=const.) 3 2 - -2-3 -4-5 L=. L s L=. L s L=. L s E/E max (L) f(e,l=const.) 3 2 - -2-3 -4-5 L=. L s L=. L s L=. L s E/E max (L) f(e,l=const.) 3 2 - -2-3 -4-5 L=. L s L=. L s L=. L s E/E max (L)

Comparison: σ r (r) β.7.5.3. -... σ r /V s.35.3 5.5.. r/r s r/r s.35.35 σ r /V s.3 5 σ r /V s.3 5.5...5.. r/r s r/r s

Comparison: κ r = v 4 r /σ 4 r β.7.5.3. -... κ r 7. 6. 5. 4. 3. 2.... r/r s r/r s 7. 7. 6. 6. 5. 5. κ r 4. κ r 4. 3. 3. 2. 2....... r/r s r/r s

Projected phase-space density

Projected phase-space density f los (R, v los ) = 2πR zmax z max dz E> dv R dv φ f(r, v).4.6.2.4 V s (GM s /r s ) /2 r s v los /V s.2 2 4 6 8 R/r s

Different ρ DM (r) and n gal (r) r s,dm /r s,gal = 5 r s,dm /r s,gal = /5.4 2.5.4.8 v los /V s.2 2.5.5 v los /V s.2.6.4.2 2 4 6 8 R/r s,gal 2 4 6 8 R/r s,gal V s GM s,dm /r s,dm r s,gal Σ gal (R) r s,dm f los (R, v los ) = const.

f los (R, v los ) β.4.4.35.2.5..5.2.3 5 v los /V s -.5 -. v los /V s.5..5 -.5 - -5 -.5 -. 2 4 6 8 R/r s -.3 2 4 6 8 R/r s -.5 β = β = β = β = 2

f los (R, v los ) β.4.5.4.5.2..5.2. v los /V s -.5 -. -.5 v los /V s.5 - -5 -.3 -.5 2 4 6 8 R/r s -.35 2 4 6 8 R/r s -. β =.5 β =.5 β = β =

Towards data analysis

Bayesian data analysis f los (R, v los ) = 2πR zmax z max dz E> dv R dv φ f(r, v) p post p prior L L = n i= f los(r i, v los,i {M s, r s,...}) v los [ 3 km/s] 4 3 2 - -2-3 -4.5.5 2 2.5 R [Mpc] (R i,v los,i )

Parameters n gal (r) ρ DM (r) ρ DM (r) /((r/r s )( + r/r s ) 2 ) Free parameters M s and r s M v and c ln( β ) and ln( β ) Fixed parameter L =.98L s r tran r s

Test on mock kinematic data

Tests on simulated data Motivation equilibrium finite size of the virial sphere infall zone substructures projection effects spherical symmetry Mock kinematic data relaxed haloes of the mass 4 5 M tracer: particles 3 particles per cluster

Mock kinematic data 4 3 2 v los [ 3 km/s] - -2-3 -4.5.5 2 R [Mpc]

Constraints on M v and c M v [ 4 M ] 2 8 6 4 3 2 x y z c 2 8 6 4 3 x y z 2 res. - - - - 5 5 2 cluster number res. - - - - 5 5 2 cluster number

c M v relation 2 c 8 6 4 2 global formation history t form < t form < t form galaxies groups clusters 2 3 4 5 M v [h - M ] local formation history

Recovering c M v relation 2 2 x z 6 6 c 4 c 4 2 2 2 4 6 2 2 4 6 2 M v [ 4 M ] M v [ 4 M ] 2 y 6 c 4 2 2 4 6 2 M v [ 4 M ]

Constraints on β and β 5rs (σ r /σ θ ) (σ r /σ θ ) 5rs 2.2 2..8.6.4.2. 2.2 2..8.6.4.2. 5 5 2 cluster number 5 5 2 cluster number x y z x y z. - - -. -2. -4.. - - -. -2. -4. β β 5rs

β and β : need for more data points (σ r /σ θ ) 9 8 7 6 5 4 3 2 β -.6 -. - -..98.95.9. -..2.4 (σ r /σ θ ) flat profiles n=3 n=3 n=9 β

β and β : hierarchical modelling cluster : p (r s,, M s ) cluster 2: p 2 (r s,2, M s,2 ) cluster N: p N (r s,n, M s,n ) p post (β, β, r s,, M s,,...) p prior L L = N n i f los (R j,i, v los,j,i {β, β, r s,i, M s,i }) i= j= p prior (r s,, M s,,...) = N p i (r s,i, M s,i ) i=

Constraints on β(r) from clusters (σ r /σ θ ) 6 5 4 3 2 β - -.3 - -....3.95.9. -.9...2 (σ r /σ θ ) β(r)=const. β (σ r /σ θ ) 6 5 4 3 2 β - -.3 - -....3.95.9. -.9...2 (σ r /σ θ ) β(r)=const. β σ r /σ θ 2.2 2..8.6.4.2. β. - -.. r/r s r/r s

Application to nearby galaxy clusters

Nearby (z <.) galaxy clusters Publically available database NASA/IPAC Extragalactic Database WINGS Cluster selection: symmetric X-ray image cool core regular velocity diagrams Final sample 4 clusters 2 redshifts per cluster within R < 2.5M pc

Constraints on c M v relation 2 8 6 WMAP5 σ 8 =.796 c 4 2 4 5 M v [h - M ]

Slope and normalization of c M α α σ 8 =.796 (WMAP5) σ 8 =.9 (WMAP) - - - - 3 4 5 6 7 8 9 c(5 4 M )

Constraints on the anisotropy profile (σ r /σ θ ) 9 8 7 6 5 4 3 2 β - -..98.95.9. -.9...2 (σ r /σ θ ) flat profiles β. 4 clusters 577 redshifts β. - -. r/r s

Comparison with the simulations. β. - -. r/r s

n gal (r) ρ DM (r)? Σ [N(<r s )/r s 2 ] - -2-3.. R/r s

n gal (r) ρ DM (r)?.5 -.5 log L - -.5-2 -2.5-3 5.9.95.5..5 r s,dm /r s,gal

Summary model of distribution function tests on mock data application to nearby clusters constraints on c M v relation β, β(r v ) Perspective for future SDSS satellites ellipticals groups