Acta Phys Sin Vol 60 No 2 2011 027802 CuS * 1 1 2 2 1 1 1 100081 2 100190 2010 2 8 2010 3 20 THz CuS THz CuS Lorentz Durde-Smith THz CuS CuS Lorentz Drude-Smith PACS 78 20 Ci 73 63 Bd 1 cm - 1 6 9 CuS 100 cm - 1 0 3 THz CuS THz-TDS 1 2 THz-TDS ZnO ZnS CdS PbSe 3 n 10 14 4 CuS 1 6 K 15 CuS 5 CuS 1 THz = 33 cm - 1 CuS THz CuS CuS CuS 100 * 09ZY012 10904176 211 985 E-mail ypyang_cun@ 126 com 2011 Chinese Physical Society 027802-1 http / / wulixb iphy ac cn
Acta Phys Sin Vol 60 No 2 2011 027802 2H 2 O 200 mg CTAB 100 ml H 2 O CuS 2 CuS X XRD 1 a 2 1 CuS P63 / mm a CTAB = 0 59362 nm c = 1 634 nm TEM 1 b CuS 171 mg CuCl 2 140 mg Na 2 S 9H 2 O 100 ml H 2 O 13 nm 1 CuS X a XRD b TEM CuS CuS 1 5 110 ZnTe 20 MPa 1 2 mm 1 CuS + PE ZnTe CuS THz THz 2 PE THz 2 2 THz CuS 16 800 3 nm 82 MHz 100 fs 760 mw THz 3 1 110 ZnTe CBS THz THz 0 3 mm 110 ZnTe 027802-2
Acta Phys Sin Vol 60 No 2 2011 027802 THz Dorney 17 4 n ω κ ω α ω 2 a THz Reference n ω = φ ω c ωd α ω = 2κ ω ω c + 1 1a = 2 d ln 4n ω A ω n ω + 1 1b 2 c d ω A ω φ ω 1024 ^σ = σ r + iσ i σ r = ε 0 ωε i σ i = ε 0 ω 1 - ε r 3 1 3 23 5% THz 3 2 CuS FFT 2 b 0 2 1 5 THz THz maxwell-garnett MG 18 Bruggeman BG clausius-mossotti MG 1 2 BG 1 2 19 BG α ω n ω Bruggeman 19 1935 3 a CuS BR 0 2 1 5 THz CuS CuS ε eff ε CuS ε PE n THz ε CuS - ε eff f + 1 - f ε PE - ε eff = 0 4 ε CuS + 2ε eff ε PE + 2ε eff f CuS CuS 4 CuS CuS 1 3 CuS CuS 0 2 1 5 1 CuS + PE 2 PE THz ^ε = ε r + iε i ε r = n 2 - κ 2 ε i = 2nκ 2 1 54 ps 3 5 1 4 CuS 0 2 1 5 THz CuS 3 b THz 2 5 027802-3
Acta Phys Sin Vol 60 No 2 2011 027802 2 a THz b FFT 3 CuS a b 4 CuS 0 2 1 5 THz 4 5 8 5 1 3 3 5 Drude- Lorentz Drude-Lorentz 20 ε m ω = ε CuS 5 Lorentz ε m ω = ε + 4 = 3 59 = 6 01 - ω 2 ω 2 p + iγ p ω + Σ j S j ω 2 TOj ω 2 TOj - ω 2 - iγ j ω ω TO /2π = 4 70 ± 0 3 THz Γ /2π = 31 53 ± 5 ε st ω 2 TO ω 2 TO - ω 2 - iγω 6 ε Drude ω p Γ p 6 ω TO CuS 4 70 THz Lorentz ω TOj Γ j S j CuS 4 43 THz 147 54 cm - 1 ε 0 5 THz Lorentz 3 1 2 6 CuS 0 2 1 5 THz ε st 027802-4
Acta Phys Sin Vol 60 No 2 2011 027802 4 THz 4 CuS a CuS b 5 CuS 0 2 1 5 珟 σ ω = n * e 2 τ / m * THz CuS 1 - iωτ 1 + Σ Drude Drude σ r ω ω = 0 c n Drude 0 σ i ω ω = 0 c 1 σ r = 0 7 Drude c 1 = - 1 σ i c 1 5 CuS σ r σ i c [ n n ] n = 1 1 - iωτ 7 n * m * τ 0-1 7 Drude-Smith τ = 64 3 fs c 1 = - 0 996-1 c 1-1 CuS 13 nm 64 3 fs THz-TDS 5 CuS Drude Drude-Smith Smith 21 CuS 2001 c Drude Lorentz c 1 027802-5
Acta Phys Sin Vol 60 No 2 2011 027802 CuS Drude-Smith 4 7 THz CuS 64 fs CuS CuS Drude 1 Liu G Schulmeyer T Brotz J Klein A Jaegermann W 2003 Thin Solid Films 431 477 2 Chen J Deng S Z Xu N S Wang S Wen X Yang S Yang C Wang J Ge W 2002 Appl Phys Lett 80 3620 3 Bushkova O V Andreev O L Batalov N N Shkerin S N Kuznetsov M V Tyutyunnik A P Koryakova O V Song E H Chung H J 2002 J Power Source 157 477 4 Jin H Hou Y B Tang A W Meng X G Teng F 2006 Chin Phys Lett 23 693 5 Zhang W X Wen X G Yang S H 2003 Langmuir 19 4420 6 Ewen J S Franz G Brett A S Thomas W H 1991 Langmuir 7 2917 7 Grijalva H Inoue M Boggavarapu S Calvert P 1996 J Mater Chem 6 1157 8 Artemyev M V Gurin V S Yumashev K V Prokoshin P V Maljarevich A M 1996 J Appl Phys 80 7028 9 Brelle M C Torres-Martinez G L McNulty J C Mehra R K Zhang J Z 2000 Pure Appl Chem 72 101 10 Han J Zhu Z Ray S Azad A K Zhang W He M Li S Zhao Y 2006 Appl Phys Lett 89 031107 11 Han J Zhang W Chen W Thamizhmani L Azad A K Zhu Z 2006 J Phys Chem B 110 1989 12 Murphy J E Beard M C Nozik A J 2006 J 110 25455 Phys Chem B 13 Baxter J B Schmuttenmaer C A 2006 J Phys Chem B 110 25229 14 Xu X Song L Shi Y Yang Y Xie S Wang L 2005 Chem Phys Lett 410 298 15 Wang W Z Liu Z Liu Y Xu C Zhang C Wang G 2003 Appl Phys A 76 417 16 Chen H Qu Y Peng W X Kuang T Y Li L B 2007 J Appl Phys 102 074701 17 Dorney T D Bataniuk R G Mittleman D M 2001 J Opt Soc Am A 18 1562 18 Maxwell - Garnett J C 1906 Philos Trans R Soc 205 237 19 Bruggeman D A G 1935 Ann Phys 416 636 20 Balkanski M 1972 Optical Properties of Solids New York North - Holland Chap 8 21 Smith N V 2001 Phys Rew B 64 155106 027802-6
Acta Phys Sin Vol 60 No 2 2011 027802 Optical and electrical properties of CuS nanoparticles in terahertz frequency * Yang Yu-Ping 1 Feng Shuai 1 Feng Hui 2 Pan Xue-Cong 2 Wang Yi-Quan 1 Wang Wen-Zhong 1 1 School of Science Minzu University of China Beijing 100081 China 2 Key Laboratory of Optical Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China Received 8 February 2010 revised manuscript received 20 March 2010 Abstract The spectral response of the mixture composed of CuS nanoparticles and polyethylene powder was measured by the terahertz time - domain spectroscopy THz-TDS The low-frequency optical properties of pure CuS nanoparticles including absorption coefficient complex dielectric constants as well as conductivity were calculated by the effective medium theory The Lorentz theory of dielectric response and the Drude-Smith model of conductivity provide good fits on the measured dielectric function as well as conductivity respectively In addition some terahertz optical properties such as the frequency of the lattice vibration and the time constant for the carrier scattering are also obtained by the fitting Our investigation could help to reveal the material properties in the terahertz range and to find out the promising physical effect for special application Keywords terahertz CuS nanoparticles Lorentz theory Drude-Smith model PACS 78 20 Ci 73 63 Bd * Project supported by the Research Foundation of the State Ethnic Affairs Commission of China Grant No 09ZY012 the National Natural Science Foundation of China Grant No 10904176 and the 985 Project and 211 Project of Ministry of Education of China E-mail ypyang_cun@ 126 com 027802-7