HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

Σχετικά έγγραφα
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Expansion formulae of sampled zeros and a method to relocate the zeros

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

AC Servo Motor Based Position Sensorless Control System Making Use of Springs

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Motion analysis and simulation of a stratospheric airship

Buried Markov Model Pairwise

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Simplex Crossover for Real-coded Genetic Algolithms

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

ER-Tree (Extended R*-Tree)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Gain self-tuning of PI controller and parameter optimum for PMSM drives

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Development of a basic motion analysis system using a sensor KINECT

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Fragility analysis for control systems

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Second Order RLC Filters

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C


X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Eight Examples of Linear and Nonlinear Least Squares

Proposal of Torque Feedforward Control with Voltage Phase Operation for SPMSM

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Quick algorithm f or computing core attribute

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Design Method of Ball Mill by Discrete Element Method


Prepolarized Microphones-Free Field

w o = R 1 p. (1) R = p =. = 1

Influence of Flow Rate on Nitrate Removal in Flow Process

CAP A CAP

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Proposal of Flux-Weakening Control for SPMSM Based on Final State Control Considering Voltage Limit

6.3 Forecasting ARMA processes

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Approximation of distance between locations on earth given by latitude and longitude

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

RSDW08 & RDDW08 series

A summation formula ramified with hypergeometric function and involving recurrence relation

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Assignment 1 Solutions Complex Sinusoids

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

NMBTC.COM /

Ψηφιακή Επεξεργασία Φωνής

SPBW06 & DPBW06 series

Monetary Policy Design in the Basic New Keynesian Model

Adaptive grouping difference variation wolf pack algorithm

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Applying Markov Decision Processes to Role-playing Game

Homework 8 Model Solution Section

Ψηφιακή Επεξεργασία Φωνής

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Transcript:

Trajectory Tracking Control using Two-degree-of-freedom Control Based on Zero-Phase-Minimum-Phase Function Factorization for Nonminimum-Phase Continuous-Time System T. Shiraishi and H. Fujimoto (The University of Tokyo) Abstract The purpose of this paper is development of high-precision trajectory tracking control for nonminimum-phase continuous time systems with unstable zeros. This paper proposes a two degree of freedom control system design method that is based on a novel factorization method for nonminimum-phase continuous time systems. First, nonminimumphase continuous time systems is factorized to minimum-phase system and zero-phase system in continuous time domain. The feedforward controller is constructed from inverse system of each factorized system. The inverse system of the minimum-phase system is designed by multi-rate perfect model following control theory, and the inverse system of zerophase system is designed by zero-phase FIR filter. Finally, This paper shows the effectiveness of proposed method by simulation and experimental results. Key Words: nonminimum-phase continuous-time system, tracking control, under-shoot, zero-phase minimum-phase function factorization 1 1) 3 ) 3) ) 1 1) kanai ) 5) HDD ) Point to Point Output 1.5 1.5.5 w/o zero : 1/(.5s + 1) w/ stable zero : (.1s+1)/(.5s + 1) w/ unstable zero : (.1s+1)/(.5s + 1).5.1.15..5.3.35. time [s] Fig. 1: Difference of time response by location of zero.

P (s) P (s) = N p(s) = K N s(s)n u (s) N p (s) l n K N s (s) N u (s) m q N p (s) N s (s) N u (s) (1) N p (s) = b pl s l + b pl s l + + b p1 s + b p () N s (s) = b sm s m + b sm s m + + b s1 s + 1 (3) N u (s) = b uq s q + b uq s q + + b q1 s + 1 () 3 3.1 () P (s) = K N s(s) N u (s) Nu(s) N u (s) N u (s) N u (s) P (s) = (5) K N s(s) N u (s) N u (s)n u (s) () P MP (s) = K N s(s) N u (s) (7) P ZP (s) = N u (s)n u (s) () P MP (s) P ZP (s)?? P ZP (s) P ZP (s) () δ t = Trajectory Generator Gn δ1 yn Feedforward Controller e CFB uff yd P Fig. : Proposed control system. δ δ3 Impulse response of Tu Nu ( s) Fig. 3: Impulse response of N u (s). 3. δ N etr y time () C F F (s) = P MP (s) P ZP (s) (9) P MP (s) 11) ZPETC P ZP (s) FIR ZPF IIR FIR FIR 3.3 P ZP (s) [z] FIR FIR ZPF FIR N G ZP F [z, z ] = α + α k (z k + z k ) (1) k=1 α n (n =, 1, N) N u (s) t = nt u δ n 3 α k α k = α k = N δ n δ n k (11) n=k α k α + ( α 1 + α + + α N ) (1) FIR P ZP (s)

Tu u pk[ k] u pi[ i] = u [ k + 1] pk u pk [k] Tr = Tu Tu u pk [ k +1] [ k + ] k k + 1 k + time i i + 1 Fig. : Multirate-sampling (case of n+q=). (1) [z] [z] = G ZP F [z, z ]z (N+1) (13) IIR FIR N 3. P MP (s) PTC P MP (s) (n + q) ẋ p (t) = A p x p (t) + b p u p (t) (1) T u x pk [k + 1] = A pk x pk [k] + b pk u pk [k] (15) P MP (s) n + q = x pi [i + 1] = A pi x pi [i] + b pi u pi [i] (1) A pi = A (n+q) pk [ ] b pi = A (n+q) pk b pk A pk b pk b pk x d [i] u pi [i] u pi [i] = b pi (I za pi)x d [i + 1] (17) x d [i] x d (t) t = it r y d (t) x d (t) = 1 [ ] 1 s s n+q T yd (t) (1) N s (s) (17) [ ] O I C MP [z] = b pi A pi b (19) pi u pk x v f x x 1 l C x w b M L µ θ,kθ Fig. 5: Physical model of high precision stage. θ g m Table 1: Stage parameters. M Carriage Mass [kg] 5.5 m Table Mass [kg] 7.7 b Widths of table [m].1 h Heights of table [m].1 L Length from pivot to CG [m].9 I Length from pivot to x [m] - µ θ Viscous coefficient of pivot [Nms/rad].1 µ θ Stiffness coefficient of pivot [Nms/rad] 133 C x Viscous coefficient of air bearing [Ns/m] T u µs FB.1 :7-9-1 XY 5 1 f x P (s) = x (s) f(s) = b s + b 1 s + b a s + a 3 s 3 + a s + a 1 s I y = m(b + h )/1, a = MmL + MI y, a 3 = (M + m)µ θ + (ml + I y )C x, a = (M + m)k θ mgl(m + m) + µ θ C x, z h x () a 1 = (k θ mgl)c x, b = ml + I y mll, b 1 = µ θ, b = k θ mgl 5 l x (s)/f(s) :7-9-

Gain [db] 5 P P n.3 y d (t) M(s) r mm Phase[deg] 5 1 1 1 1 1 3 P P n 1 1 1 1 1 3 Fig. : Frequency response of P (s) and P n (s). 1 l x 1 x x x x 1 x v w x = ( vx 1 + wx )(w v) P (s) = x (s)/f(s) P n (s) P n (s) P n (s) = 7.71(s + 11.7)(s 13.3) s(s + 1.1)(s (1) +.7s + 3.9 1 ) 13.3 () = s + 9.9s 3 + 3.9 1 s +.3 1 s N p (s) = 7.71s + 11.31s + 7.9 1 N s (s) = 9.33 1 3 () s + 1 N u (s) = 9.1 1 3 s 1 K = 7.9 1. FB C F B (s) PID C notch (s) C F B (s) = C P ID (s) C notch (s) (3) C P ID (s) = p s + p 1 s + p s(s + l 1 ) C notch (s) = s + Q 1 s + ω s + Q s + ω p =.9 1, p 1 =. 1 5, p = 5.19 1, l 1 = 9., Q 1 = 5., Q = 1.9, ω =. () (5) FB C F B (s) ( ) ωd M(s) =, ω d = π () s + [ ω d y d (t) = L M(s) r ], r =. (7) s. PTC 1) :--1 :--1 :--1 PTC PTC P n (s) = K N s(s) () n + q n () y n G n (s) G n (s) = K N s(s)n u (s) (9) y n N u (s).5 3..5.1 7(a) N u (s) = 1/(9.1 1 3 s+1) 7(b) [z] P ZP [z] N = 1 5. y d u F F P (s) N u (s) kanai

1 y d 3 5 u conv y conv y prop.5 e trconv e trprop u prop 3 Position[mm] Tracking error[mm] 1.5 1 Control Input[N] 1.5 3.5.1.15..5 (a) Reference y m and output y..5.5.1.15..5 (b) Tracking error e. Fig. 9: Simulation results (N = 5)..5.1.15..5 (c) Control input u. Impulse respose 1 1 State variables 1 y prop b p x p1 b p1 x p b p x p3.....1.1 Gain[dB] Phase[deg] Gain[dB] Gain[dB] 3 (a) Impulse response of N u (s). P ZP (N=5) (N=1) 1 1 1 1 1 3 P ZP (N=5) (N=1) 1 1 1 1 1 3 (b) Frequency responses of (s) and P ZP (s). 15 1 5 Fig. 7: 1 1 1 1 15 1 5 (a) Proposed method. 1 1 1 1 (b) Conventional method. Pz Prop. Pz Conv. Fig. : Frequency responses u F F /y d and P (s) 9 9(a) 9(b).5.1.15..5 Fig. 1: Trajectory of b p x 3, b p1 x, b p x 1, and y. 9(c) y m e u FIR N 5.1 s 9(a) 9(b) 9(c) x 3 = ẋ, x = ẋ 1 y(t) = b p x 3 (t) + b p1 x (t) + b p x 1 (t) (3) 1 (3).7 11 11(a) 11(b) 11(c) y d e u N =. s 9 ( ±1 [N] )

5 1) A. Hara, K. Saiki, H. Fujimoto and K. Sakata : Basic Examination on Simultaneous Optimization of Mechanism and Control for High Precision Stage, Proc. of IIC7, Vol. 7, No. 11, pp. 5 7 (7) (in Japanese) ) M. Tomizuka : Zero phase error tracking algorithm for digital control, ASME Journal of Dynamic Systems, Meas and Control, Vol. 113, pp. 1 (197) 3) B.P. Rigney, L.Y. Pao, and D.A. Lawrence : Nonminimum phase dynamic inversion for settle time applications, Control Systems Technology, IEEE Transactions on, Vol. 17, No. 5, pp. 99 15 (9). ) H. Fujimoto, Y. Hori and A. Kawamura : Perfect Tracking Control Method Based on Multirate Feedforward Control, Transactions of SICE, Vol. 3, No. 9, pp. 7 77 () (in Japanese) 5) M. Miyoshi and Y. Kaneda : Active noise control using inverse filtering of a sound field in a room, J. Acoust. Soc. Jpn, Vol., No. 1, pp. 3 1 (199) (in Japanese) ) T. Tomaru and Y. Mori : A New Design of Feedfoward Control for Non Minimum-Phase Systems Based on the Extended Inverse Function. IEEJ Trans. EIS, Vol. 17, No., pp. 1 133 (7) (in Japanese) 7) T. Sogo : Approximation of continuous-time inverse systems with the sampled-data counterparts and its application to iterative learning control, Transactions of SICE, Vol. 3, No. 1, pp. 37 5 (7) (in Japanese) ) K. Fukushima, H. Fujimoto and S. Nakagawa : Short-Span Seeking Control of Hard Disk Drive with Vibration Suppression PTC, IEEJ Trans. IA, Vol. 1, No., pp. 7 71 () (in Japanese) 9) C.J. Kempf and S. Kobayashi. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. Control Systems Technology, IEEE Transactions on, Vol. 7, No. 5, pp. 513 5 (1999) 1) H. Van Brussel, C.-H. Chen, and J. Swevers, Accurate motion controller design based on an extended pole placement method and a disturbance observer, Ann. CIRP, vol. 3, no. 1, pp. 37 77, 199. 11) T. Shirasihi and H. Fujimoto : Design Method of Mode Switching Control System using Perfect Tracking Control, Proc. of IIC1, Vol. 1, No. 1, pp. 19 (1)(in Japanese) Position[mm] Tracking error[mm] Control Input[N] 1 1 1 1 1 y d conventional proposed.5.1.15..5.3 1 (a) Reference y m and output y. conventional proposed.5.1.15..5.3 time[s] 15 1 5 5 (b) Tracking error e. conventional proposed 5.5.1.15..5.3 time[s] (c) Control input u. Fig. 11: Experimental results. 1), : --, 3(), p57-, 19. 13) :,, pp.95 9, 19.