M in ing M ulti2d im en siona l Com plex A ssoc ia tion Rule Ba sed on Artif ic ia l Imm une System and Gene Expression Programm ing

Σχετικά έγγραφα
M in ing Recursive Function s Ba sed on Gene Expression Programm ing

Application of a novel immune network learn ing algorithm to fault diagnosis

Knowledge Induction Ba sed on Genera liza tion of M ulti2benchmark A ttr ibute

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

M in ing the Com pa tib ility Law of M ultid im en siona l M ed ic ines Ba sed on D ependence M ode Sets

Quick algorithm f or computing core attribute

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

A multipath QoS routing algorithm based on Ant Net


Research on Economics and Management

ER-Tree (Extended R*-Tree)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

China Academic Journal Electronic Publishing House. All rights reserved. O ct., 2005

Knowledge Rep resentation for Incomp lete Fault D iagnosis Based on Flow Graphs

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Grid Re source Allocation Algorithm Ba sed on Parallel Gene Expre ssio n Pro gra mming

Jou rnal of M athem atical Study

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

MUL TIL EVEL2USER2ORIENTED AGRICUL TURAL INFORMATION CLASSIFICATION

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

On a New Model for Solving B ilevel Leader2follower Decision2making Problem s

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Approximation Expressions for the Temperature Integral

D esign and Imp lem en tation of Parallel Genetic A lgo rithm

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

A research on the influence of dummy activity on float in an AOA network and its amendments

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

1 Google Map s. ? Google Map s. Google Map s , HTTP : http: / /kh0. google. com /kh? n = 404&v = 8&t = t, t. , Google

Reading Order Detection for Text Layout Excluded by Image

Congruence Classes of Invertible Matrices of Order 3 over F 2

The Simply Typed Lambda Calculus

Homomorphism in Intuitionistic Fuzzy Automata

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Buried Markov Model Pairwise

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

23, 1 Vol123, No JOURNAL OF SHENZHEN UN IVERSITY SC IENCE AND ENGINEER ING Jan , 2.,, ;,,, ,

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

MSM Men who have Sex with Men HIV -

Arbitrage Analysis of Futures Market with Frictions

OLS. University of New South Wales, Australia

A summation formula ramified with hypergeometric function and involving recurrence relation

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Adaptive grouping difference variation wolf pack algorithm

Prey-Taxis Holling-Tanner

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

D evelopm en t and Applica tion of M odeling and S im ula tion Technology

,,, (, ) , ;,,, ; -

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

TMA4115 Matematikk 3

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

( , ,

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Fo recasting Stock M arket Q uo tation s via Fuzzy N eu ral N etw o rk Based on T 2S M odel

ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Study of urban housing development projects: The general planning of Alexandria City

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Polyvinyl Chloride PVC, The effects of organotin thermal stabilizers on the dehydrochlorination of TPUΠPVC blends

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

High order interpolation function for surface contact problem

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Transcript:

38 5 ( ) Vol. 38 No. 5 2006 9 JOURNAL OF SICHUAN UN IVERSITY ( ENGINEER ING SC IENCE ED ITION) Sep t. 2006 : 100923087 (2006) 0520136207 1, 1, 1, 2, 1, 3, 1, 1 (1., 610065; 2., 723003; 3., 610031) :,,,;, ;,, ;, 1 3 : ; ; ; ; : TP311 : A M in ing M ulti2d im en siona l Com plex A ssoc ia tion Rule Ba sed on Artif ic ia l Imm une System and Gene Expression Programm ing ZENG Tao 1, TAN G Chang2jie 1, ZHU M ing2fang 1, 2, X IAN G Yong 1, 3, L IU Yin2tian 1, CHEN Peng 1 (1. School of Computer, Sichuan Univ., Chengdu 610065, China; 2. Dep t. of Computer Sci. and Technol., Shaanxi Univ. of Technol., Hanzhong 723003, China; 3. Chengdu Electromechanical College, Chengdu 610031, China ) Abstract: In order to handle rich sem antics for comp lex data m ining app lication, the formal concep t ofm ulti2dimen2 sional Comp lex A ssociation Rule (MDCAR) was p roposed. To m ine it, a novel method based on A rtificial Immune Gene Exp ression Programm ing (A IGEP) was introduced, where, new structures of antibody and immune cell were designed to decrease computing comp lexity, the special negative select strategy was p resented to elim inate invalid or redundant immune cells according to system requirements, and a heuristic MDCAR reduction criterion was intro2 duced, that is, a strong rule is fine only if the contra2positive of it is strong. Experiments showed that the new method can m ine MDCAR w ith good efficiency and high p recision and imp rove the performance, in certain case, 10 1000 times higher than that without negative select strategy. Key words: data m ining; multi2dimensional comp lex association rule; meta2rule; gene exp ression p rogramm ing; artificial immune system [ 1-4 ] : 2006-01 - 17 : (60473071; 90409007) : (1976 - ),,. :.,,, [ 1-4 ],,,

5, : 137 12 1: 30 40 (a), (b), (? c) (d), : 1: ( a b (? c) ) d,,,, 1 2 : 40 50 (a), (b),5000 (c) (d), : 2: ( a ( b c) ) d 23: ( a b) d 4: ( a c) d, 3 4 2,,, 1 2,,,,,, 1 [ 4 ] Fu,, (1) (2), "" 1 () A ttr = {A 1, A 2,, A n } X < A ttr, Y < A ttr, X g, Y g, X Y = g P Q X Y,,? 1 : 1) P Q, P, Q 2) P Q 3) P Q,,, 2 ( ) ru le c, ru le m, : 1) ru le c ru le m (Unified),ru le c ru le m 2) ru le c, 3) ru le c, (MDCAR) : (Unified) [ 4 ] 2. 2 Unified 3: ru le m : (A B (? C) ) D, ru le c ru le m MDCAR ru le c : (A ( a) B ( b) (? C ( c) ) ) D ( d), ru le c,, : A ( x) x; B ( x) x; C ( x) x; D ( x) x ru le c :a, b, c,d, 1 (1), [ 1 ], 2[ 6 ],[ 6 ] GEP,GEP,,,, GEP [ 5-7 ] [ 8-10 ] (A IGEP), 2 A IGEP ( Gene Exp ression Program2 m ing, GEP), Candida Ferreira [ 5 ] GEP,,,, [ 5-7 ]

138 () 38,,, (A rtificial Im2 mune System, A IS) [ 8-10 ], [ 8-10 ] GEP [ 5-7 ],, [ 10 ], GEP,,,A IGEP,: : MDCAR : : : GEP : ( ), 1 n :MD2 CAR,,,,, [ 6 ] PAGEP 2. 1, GEP [ 5-7 ], MDCAR,1 1 Tab. 1 An exam ple of An tibody 1 f 1 (A ( a) B ( b) (? C ( c) ) ) f 2 D ( d) 2 s 1 A (30 40 ) B ( ) (? C ( ) ) s 2 D () 3 p 1 s 1 p 2 s 2 4 p 3 s 1 s 2 p total : A ( x) x; B ( x) x; C ( x) x; D ( x) x 1, : 3 (Antibody) 3 ( F, S, I),, 1) F = ( f 1, f 2 ) GEP 2 2) S = ( s 1, s 2 ) 2 3) I = ( p 1, p 2, p 3, p total ) 4,, p 1, p 2, p 3 s 1, s 2 s 1 s 2, p total,, 2 2 Tab. 2 An exam ple of BCell 1 g 1? AB C g 2 D 2 f 1 (A B (? C) ) f 2 D 3 v 0 2 GEP,GEP,[ 7 ], GEP K, GEP : 4 ( BCell ) 3 (G, F, v),,

5, : 139 1) G = ( g 1, g 2 ) 2, 2) F = ( f 1, f 2 ) GEP 2 3) v v { - 1, 0, 1, 2},, 0, - 1, 1, 2 2. 2 A IGEP [ 10 ],,,1 A IGEP A IGEP 1 A IGEP : TS,supp,conf : : 1 Initialize parameters; 2 WH ILE ( generation < maxgennum AND bgstate < m axzerocount) { 3DO{ 4 IF ( elitepool! = NULL) { 5 BCellSet. add ( generatebcellsbyelitepool ( every_ gen _ cellnum - B cellset. size ) ) ; } 6 nselect(bcellset) ; / / 7 IF (BCellSet. size > = every_gen_ cellnum ) BREAK; 8 BCellSet. add ( generatebcell ( every_gen_ cel2 lnum - BCellSet. size) ) ; 9 nselect(bcellset) ; 10 }WH ILE ( BCellSet. size < every_gen _ cellnum AND hfc < z ) 11 AntiBodySet = generateantibodyset ( BCellSet, TS ) ; / / 12 addtonrulepool(bcellset) ; / / 13 Match (AntiBodySet, TS) ; / / - 14 Select(AntiBodySet, conf, supp) ; / / 15 OutPut(AntiBdoySet) ; 16 addtoelitepool(antibodyset) ; / / 17 clone (BCellSet) ; / / 18 } STOP; 2. 3, A IGEP [ 10 ], : 1) BCell, ; 2) BCell. F = ( f 1, f 2 ), ( f 2, f 1 ) (? f 1, f 2 ) ( f 2,? f 1 ) ( f 1,? f 2 ) (? f 2, f 1 ) (? f 1,? f 2 ) (? f 2,? f 1 ) 7 ; : 1) 2) ; 3),, 2. 4 A b, A = A b. s 1 B = A b. s 2,, A b. I = ( p 1, p 2, p 3, p total ), P (A ) = p 1 P (B ) = p 2 p total p total P (A B ) = p 3, A B p total s = P (A B ) c = P (B A ), P (A ) P (B ) P (A B ) P (? A ) P (? B ) P (? A B ) P (A? B ) P (? A? B ), 8 MDCAR, 8 MDCAR: 1) A B; 2) A? B; 3) B A; 4) B? A; 5)? A B; 6)? A? B; 7)? B A; 8)? B? A 8, 8,,,,

140 () 38,,,, : ;,,, 3 1,2, 3,, [ 11 ] 1Ts n, m, - O ( n m ) 2Ts n, m, A ttr = {A 1, A 2,, A m }, A i A i, BCell X = { x 1,, x k }, X Α A ttr, B cell AB S ca le, max (AB S ca le) = n, AB S ca le Φ m in ( n, 7 k x i ) 1 3Ts n, m, A ttr = {A 1, A 2,, A m }, A i A i, k, 1 O ( n 2 ) 1 A IGEP O ( n 2 ) :, O ( c), O ( n), 3 O ( n 2 ),A IGEP C 1 O ( c) + C 2 O ( n) +O ( n 2 ) = O ( n 2 ), 1, A IGEP MDCAR,, 4, CPU: Intel C3 1. 0 GHz, RAM: 384 M, HDD: 2 80 G;,MS W indows XP p rofessional SP1, JDK1. 5, UC I [ 6 ]PAGEP, A IGEP, Ap rior [ 3 ],Ap rior,,, :,, [ 1 ] Ap rior [ 3 ] 4. 1,,, A IGEP Ap rior( ) (, MD2 CAR),A IGEP Ap rior 1, 9, A IGEP ( { },),, A IGEP 1, 9, F ig. 1 The end of m in ing where d im en sion num ber is 9 and the objective is trad itiona l m ulti2d im en sion2 a l a ssoc ia tion rule 2, 3cmc,, 4, maxgenn um = 300, cellnum _every_gen = 20, m axz eroc oun t = 20, hfc =

5, : 141 200, A IGEP MDCAR, Ap riori, ( TMAR) 2 F ig. 2 Rela tion sh ip between d im en sion num ber and u2 n ique imm une cell num ber where the order of pred ica tes in MDCAR is not con sidered 3( conf = 95. 0% supp = 1. 0% ) Tab. 3 M in ing MDCAR( conf = 95. 0% su pp = 1. 0% ) A IGEP Apriori (MDCAR) ( TMAR) 1 {2, 3, 4, 5} { } 41 41 2 {2, 3, 4, 5} {,,? } 5975 41 3 {2, 3, 4, 5} {,,? } 1406 41 4 {2, 3, 4, 6} { } 10 10 5 {2, 3, 4, 6} {,,? } 5325 10 6 {2, 3, 4, 6} {,,? } 586 10 7 {4} {2, 3, 5, 6, 7, 8, 9} {,,? } 21072 :7,,, 3,,,,,,, 32 3, 5975 1406,,, 1406 2 = 703, 5 6 5325 586 2 = 293, 4MDCAR 4:5 6 36, 5: D 3 (2) D 6 (1) D 2 (2)? D 4 (0), conf = 97. 81%, supp = 9. 10%; 6:? (D 2 (2)? D 4 (0) )? D 6 (1) ), conf = 95. 95%, supp = 4. 82%, D i ( x) ix (D 3 (2) 5 6,, :,, MDCAR, A IGEP, MDCAR, 3 7, 4. 2 UC I cmc, : {,,? }, maxz erocoun t = 20, hfc = 200, 4 Tab. 4 Effect of nega tive select stra tegy 1 {2, 3, 4} 500 20 2 82653 27 212 2 {2, 3, 4, 5} 500 20 39 93415 742 7483 3 {2, 3, 4, 5, 6} 500 20-15557 10000 105422 4 {2, 3, 4, 5, 6} 2000 20 1207 771279 21847 259474 5 {2, 3, 4, 5, 6, 7} 500 20-3202 10000 18868 6 {2, 3, 4, 5, 6, 7, 8} 500 20-1484 10000 27608, 1 2 4 ( ), 1 3,

142 () 38, GEP,, MDCAR 4. 3, : 1),, A IGEP Ap riori,, A IGEP Ap riori ; 2),, ; 3),, 1 3,, A IGEP, 5,,,,,,,,,, : [ 1 ] Han J iawei, Kambr M. Data m ining2concep ts and tech2 niques[m ]. Beijing: H igher Education Press, 2001. [ 2 ]Agrawal R, Im iclinski T, Swam i A. Database m ining : a performance perspective [ J ]. Data Enginnering, 1993, 5: 914-925. IEEE Trans Knowledge and [ 3 ]Agrawal R, Srikant R. Fast algorithm for m ining association rules [ C ] / / Proc of 1994 International conference Very Large Data Bases (VLDB 94), Santiago : Chile, 1994: 487-499. [ 4 ] Fu Y, Han J. Meta2rule2guided m ining of association rules in relational databases[ C ] / / Proc of First Int l Workshop Integration Knowledge D iscovery with Deductive and Ob2 ject2o riented Databases ( KDOOD 95), Singapore, 1995: 39-46. [ 5 ] Ferreira C. Gene exp ression p rogramm ing: a new adap tive algorithm for solving p roblem s [ J ]. Comp lex System s, 2001, 13 (2) : 87-129. [ 6 ] Zuo J ie, Tang Changjie, Zhang Tianqing. M ining p redicate association rule by gene exp ression p rogramm ing [ C ] / / Proc of the 3 rd International Conference on W eb2age Infor2 mation Management (WA IM 2002), Beijing, 2002: 92-103. [ 7 ] Zuo J ie. Research on the key technology of gene exp ression p rogramm ing [ D ]. Chengdu: Sichuan University, 2004. [. [ D ]. :, 2004. ] [ 8 ]De Castro L N, Von Zuben F J. A rtificial immune system s: Part I Basic theory and app lications[ R ]. 1999. [ 9 ]De Castro L N, Von Zuben F J. A rtificial immune system s: Part II A survey of app lications [ R ]. RT DCA, 2000. [ 10 ]. [M ]. :, 2004. [ 11 ] Zeng Tao, Tang Changjie, Zhu M ingfang, et al. A IGEP: an app roach for m ining multi2dimension comp lex association rule [DB /OL ]. http: / /www. paper. edu. cn, 2005052193. [,,,. A IGEP: [ DB /OL ]. http: / /www. paper. edu. cn, 2005052193. ] ( )