30 2 2012 3 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. 2 Mar. 2012 DOI: 10.3969/j.issn.0255-8297.2012.02.003 1,3 1 1 1 2 1. 200072 2. 200072 3. 200072... 3.20% 20.00%. TN929 0255-8297(201202-0120-08 Localization of Collaboration Ripples in Wireless Sensor Network ZHANG Jin-yi 1,3, DUAN Su-yang 1, WU Yu-jian 1, WANG Chun-hua 1, DING Meng-ling 2 1. Key Laboratory of Special Fiber Optics and Optical Access Networks, Ministry of Education, Shanghai University, Shanghai 200072, China 2. Microelectronic Research and Development Center, Shanghai University, Shanghai 200072, China 3. Key Laboratory of Advanced Displays and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China Abstract: This paper proposes a collaboration ripple algorithm for high accuracy, large range and low cost localization of large scale nodes in a wireless sensor network (WSN. A splicing network topology is designed based on a rational network topology research. Location error is reduced with collaboration among the nodes. The ripple algorithm is applied to locate unknown nodes in a unit cell to realize accurate localization of neighboring notes. Verification of the algorithm shows that the collaboration ripple location algorithm can reduce anchor nodes by 3.20%, and improve precision by 20.00%, indicating effectiveness of the proposed algorithm. Keywords: wireless sensor network (WSN, localization, high accuracy, network topology divide, collaboration ripple localization algorithm (wireless sensor networks, WSN. [1]. WSN WSN [2]. (range-based (range-free. AOA(angle of arrival [3] TOA(time of arrival [4] TDOA(time difference of arrival [5]. 2011-05-04 2011-07-11 (No.J50104 (No.08706201000, No.08700741000 SoC E-mail: zhangjinyi@staff.shu.edu.cn
2 121 [6]. [7] [8] DV-Hop(distance vector-hop [9] APIT(approximate PIT test [10] ROCRSSI(ring overlapping based on comparison of received signal strength indicator [11].. DV-Hop (.. APIT. [11] APIT ROCRSSI APIT. ROCRSSI. WSN..... 3.20% 20.00%. 1 1.1 [12].. 1(a... 4. 1(b 1 4. 1 Figure 1 Division of a location area 1.2. 1.. 4. 1. 1. 2. RSSI 1. 2. 2.1 [13]. (received signal strength indication, RSSI.. RSSI RSSI.
122 30 1 Table 1 Communication area and function of each node 1 2 4 4 3 1 2 1 2 RSSI RSSI ( d P (d = P ( + 10ηlg + X δ (1 P (d d d P ( RSSI η X δ δ. η X δ.. 3, X δ, η, RSSI. R = P t P (d (2 P t dbm. R D = P t P ( (3 (2 ( d P (d = P t R D + 10ηlg + X δ (4 X δ 0 RSSI ( d R = R D 10ηlg (5 2(a. 3, 4, 5 3. 2 Figure 2 Process of collaboration and localization in ripple algorithm 2(a 2 ( d2 3 R 2 3 = R D 10ηlg ( d2 4 R 2 4 = R D 10ηlg ( d2 5 R 2 5 = R D 10ηlg (6, R D, η, RSSI.
2 123 2.2.. (... RSSI 2(b. (6 RSSI.. 2(b 3. 5 RSSI.. 2(b 6 2 5 3 2 (5, 3.. 5.. [14] (degree of irregularity, DOI, 3... [15] 0, r + r e d(s, p P (s, p= e λ(d(s,p (r reβ, r r e d(s, p<r+r e 1, r r e > d(s, p (7 r r e 3. λ β 0.5. d(s, p s p R d R(d0 R(d = ( d η η. (7. 3 DOI Figure 3 Module of DOI 4. N anc P i = 1 [1 p k ] k=1 i = 1, 2,, N unk ; k = 1, 2,, N anc (8 P k P k P i N anc N unk.. 2. switch-case RSSI. I P. 2.3.
124 30 2 Table 2 Pseudo-code of the sensing process of the ripple algorithm 1 for U i from 1 to N unk N unk 2 for A i from 1 to N anc N anc 3 switch (R(A i, U i P i i 4 case T 1 R(A i, U i T 2 U i i 5 U i P 1 A i i 6 S(A i, U i = S(A i, P 1 R(A i, U i i A i RSSI. T i i RSSI 7 case T N R(A i, U i T N+1 S(A i, P i A i P i 8 U i P N S(A i, U i U i A i 9 S(A i, U i = S(A i, P N S(U i U i 10 endcase I 11 endfor P 12 S(U i = I( S(A i, U i// L 13 L = P (S(U i// 14 endfor... 1. 2(b.. 4. 4 1. 1/4 1/4. 4. 5. 1. 1 2.. 3 Celeron(R, 4 Figure 4 Communication of unknown nodes and neighbor nodes in unit cell
2 125 ROCRSSI. MATL- AB 5 m 5 m. 5. 3 30 100 7. 5 Figure 5 Flow chart of neighbor nodes location CPU 2.8 GHz, 1 G MATLAB- 7.0. 5 m 5 m 25. 1 m 2 2. 5. 6.... 1 m 2 100 0.472 m 100 1.12 m. 7 Figure 7 Comparative between two algorithms on location error and communication cost 6 Figure 6 Distribution of nodes using collaboration ripple localization algorithm ROCRSSI. 7(a 10. RSSI. ROCRSSI. 7(a 10
126 30.. 100 0.472 m. 7(b. [14] 10. 1 5. 7(b 10.. 1 5+40/2+4=29. ROCRSSI 5+4 5=25. ROCRSSI ROCRSSI. 3. 3 Table 3 Comparative between the classical gorithms and collaboration ripple localization algorithms /% [7] R A 10 APIT [10] 40%R A + N 10 DV-Hop [9] 33%R 2A(A + N 10 ROCRSSI [11] 30%R A + AC A 6.8 10%R A+ 6.8 3 R. A E A = E /R. 3 ROCRSSI 20%. A N C A ROCRSSI. 3 1 1 N N. 3. DV-Hop. ROCRSSI APIT ROCRSSI.. 100 m 100 m 100 400 231. 1 m 2 1 10 000. 731 10 000 6.8%.. RSSI RSSI APIT ROCRSSI.. 4.. 1 2. MATLAB 3.20% 20.00%..
2 127. : [1] Savvides A, Srivastava M B, Han C C. Dynamic fine-grained location in ad-hoc networks of sensors [C]//Proceedings Mobile Computing and Networking, Rome, Italy, 2008: 166-179. [2] Boukerche A, Oliveira H A B, Nakamura E F. Localization systems for wireless sensor networks [J]. IEEE Wireless Communications, 2007, 14(6: 6-12. [3] Koshima H, Hoshen J. Personal locator services emerge. [J]. IEEE Spectrum, 2000, 37(2: 41-48. [4] Patwari N, Hero A O, Perkins M, Correal N S. Relative location estimation in wireless sensor networks [J]. IEEE Transaction Signal Processing Society, 2003, 51(8: 2137-2148. [5] Girod L, Estrion D. Robust range estimations using acoustic and multimodal sensing [C]//IEEE International Conference on Intelligent Robots and Systems. Los Angeles, CA: IEEE Press, 2001(3: 1312-1320. [6] Rachuri K, Murthy C. Energy efficient and scalable search in dense wireless sensor networks [J]. IEEE Transactions on Computers, 2009, 58(6: 821-826. [7] Bulusu N, Heidemann J, Estrin D. GPS-less lowcost outdoor localization for very small devices [J]. IEEE Personal Communication Society, 2000, 7(5: 28-34. [8] Doherty L, Ghaoui L, El Ghaoui L. Convex position estimation in wireless sensor networks [C]// IEEE Computer and Communications Societies. Berkeley, CA: IEEE Press, 2001, 3(3: 1165-1183. [9] Niculescu D, Nath B. DV based positioning in ad hoc networks [J]. Journal of Telecommunication Systems, 2003, 22(1: 267-280. [10] He T, Huang C. Range-free localization schemes for large scale sensor networks [C]//Proceedings the 9th Annual International Conference on Mobile Computing and Networking, San Diego, CA. 2003: 81-95. [11] Liu Chong, Wu Kui, He Tian. Sensor localization with ring overlapping based on comparison of received signal strength indicator [C]//2004 IEEE International Conference on Mobile Ad-hoc and Sensor System. Canada: IEEE press, 2004: 516-520. [12] Zhang Chi, Zhang Yanchao, Fang Yuguang. A coverage inference protocol for wireless sensor networks [J]. IEEE Transactions on Mobile Computing, 2010, 9(6: 850-864. [13] Rahman M Z, Kleeman L. Paired measurement localization: a robust approach for wireless localization [J]. IEEE Transactions on Mobile Computing, 2009, 8(8: 1087-1102. [14] Zou Y, Chakrabarty K. Sensor deployment and target localization in distributed sensor networks [J]. ACM Transactions on Embedded Computing Systems, 2004, 3(1: 61-91. [15] Zhou G, He T, Krishnamurthy S, Stankovic J A. Models and solutions for radio irregularity in wireless sensor networks [J]. ACM Transactions on Sensor Networks, 2006, 2(2: 221-262. ( :