HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Σχετικά έγγραφα
Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error


A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Quick algorithm f or computing core attribute

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ER-Tree (Extended R*-Tree)

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation


An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Indexing Methods for Encrypted Vector Databases

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Numerical Analysis FMN011

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Anomaly Detection with Neighborhood Preservation Principle

Research on Economics and Management

Detection and Recognition of Traffic Signal Using Machine Learning

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Reading Order Detection for Text Layout Excluded by Image

Area Location and Recognition of Video Text Based on Depth Learning Method

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Buried Markov Model Pairwise

Partial Differential Equations in Biology The boundary element method. March 26, 2013

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Tridiagonal matrices. Gérard MEURANT. October, 2008

Homomorphism in Intuitionistic Fuzzy Automata


[2], [3], [8], [20] [4] [6], [18] [1], [11], [19] [13] [10] N SVD PCA N SVD Vasilescu Vasilescu N SVD [14] [17] Y Li [7] Y Li N SVD [12] 2,,,,, 596


Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Research on model of early2warning of enterprise crisis based on entropy

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Comparison of Discriminant Analysis in Ear Recognition

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

IMES DISCUSSION PAPER SERIES

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

The ε-pseudospectrum of a Matrix

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

{takasu, Conditional Random Field

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

Development of a basic motion analysis system using a sensor KINECT

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

, Evaluation of a library against injection attacks

Kenta OKU and Fumio HATTORI

A research on the influence of dummy activity on float in an AOA network and its amendments

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Adaptive grouping difference variation wolf pack algorithm

Simplex Crossover for Real-coded Genetic Algolithms

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

High order interpolation function for surface contact problem

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Text Mining using Linguistic Information

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb


Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Automating Complex Workflows using Processing Modeler

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Πληροφοριακά Συστήματα Διοίκησης

Section 8.3 Trigonometric Equations


Kernel Methods and their Application for Image Understanding

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

Ο ΔΕΙΚΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΑΝΑΠΤΥΞΗΣ ΣΤΗΝ ΕΛΛΑΔΑ ΤΟ 1991 & 2001 HUMAN DEVELOPMENT INDEX IN GREECE IN 1991 & 2001

Transcript:

DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation Matrix Abstract Correcting on HOSVD Junichi MORIGAKI and Kaoru KATAYAMA Graduate School of System design,tokyo Metropolitan University E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp We propose a classification method for tensor data with higher order processing based on Higher Order Singular Value Decomposition (HOSVD) by Lathauwer et al. Recently, due to increasing complexity of data, vectors and matrices are sometimes not suitable for describing the true nature of data. Tensor is a concept of describing data of higher order and dimensions. In data classification, feature quantity can be described by tensor. In our method, we improve the classification method by Savas et al. by autocorrelation matrices correcting on HOSVD and combinatorial subspace constitution method by Sun et al. Key words HOSVD, Image Classification, Higher Order Data Analysis 1. ( ) (HOSVD) [1] PARAFAC [2] Savas HOSVD [3] HOSVD HOSVD Savas MATLAB (ex. A(:, :, ν)). 2. HOSVD Wang [4] Vasilescu CG [5] [6] Wang people views

2 3-Tensor n R J IK A (2) : a ijk = a (2) jν, ν = k + (i 1)I, R K IJ A (3) : a ijk = a (3) kν, ν = i + (j 1)J. 1 3-Tensor illums express pixels 5- [7] [8] Sun Web [9] Kolda [10] Vasilescu HOSVD 3. Nth N Nth N-Tensor 2 2 1 Nth A A, B = b i 1 i 2 i N a i1 i 2 i N (1) i 1,,i N 2 2 0 2 A A = A, A (2) 3 A n 3rd A R I J K ( 1) R I JK A (1) : a ijk = a (1) iν, ν = j + (k 1)K, 4 A R I 1 I 2 I N U R J n I n n n ( 2) (A n U) i1 i 2 i n 1 j ni n+1 i N = a i1 i 2 i n 1 i ni n+1 i N u jn i N (3) i n (A n F) m G = (A n G) m F, m = n (4) (A n F) n G = A n (GF) (5) 1 Nth A A = S 1 U (1) 2 N U (N) (6) HOSVD [1] 1 U (m) U (n) m = n 2 S A a S in =α, S in=β = 0, α = β (7) b S in =1 > = S in =2 > = > = S in =I n > = 0 (8) 4. 4. 1 Savas Savas HOSVD [3] 5 3rd

3 A ν = S(:, :, ν) 1 U (1) 2 U (2) (9) 4 S, U (n) A HOSVD(A = S 1 U (1) 2 U (2) 3 U (3) ) A ν, A µ = 0, ν = µ (10) Savas D R(µ) µ k R(µ) = 1 D, A µ ν 2 (11) ν=1 4. 2 Savas Kohonen [11] Sun [12] ( 3) Sun ν x µ µ ν ( 4) Savas 5. Savas 5. 1 Savas Savas Algorithm1 Algorithm2 HOSVD S 1 2 U µ V µ S µ (:, :, j), S µ (:, :, k) = δ jk δ jk X X = 1 1 5. 2 Algorithm3 Algorithm4 Algorithm5 Algorithm3 1 2 2 3 2

Algorithm 1 Savas Input: α µ ν (µ) Aµ, µ = 1... M ν (µ) = 1... N (µ) K Output: S µ, µ = 1... M 2: repeat 3: A µ HOSVD B µ U (1)µ U (2)µ U (3)µ 4: S µ B µ (:, :, 1 : K) 1 U (1)µ 2 U (2)µ 5: S µ (:, :, j), S µ (:, :, k) = δ jk (δ jk :) 6: µ µ + 1 7: until µ > M 8: return S µ, µ = 1... M Algorithm 2 Savas Input: X, S µ, µ = 1... M, K Output: category 2: category 1 3: min 1 4: X X = 1 5: repeat 6: if min < 0 min > 1 K i=1 X, Sµ (:, :, i) 2 then 7: min 1 K i=1 X, Sµ (:, :, i) 2 8: category µ 9: end if 10: µ µ + 1 11: until µ > M 12: return category 4 3 5 3 6 3 6 Savas HOSVD HOSVD 6 Algorithm4 Algorithm5 6 Algorithm5 Savas X X = 1 Algorithm 3 Input: α µ ν (µ) Aµ, µ = 1... M ν (µ) = 1... N (µ) K Output: S µ, µ = 1... M 2: A µ(1) 3: 2 A µ(2) 4: 2 A µ(3) 5: 3 A µ(4) 6: 3 A µ(5) 7: 3 A µ(6) 8: repeat 9: i 1 10: repeat 11: m 1 12: repeat 13: A µ(i) m 14: C µ(i) m A µ(i) m A µ(i)t m 15: U µ(i) m S µ(i) m 16: 17: m m + 1 18: until m > 3 19: B µ(i) A µ(i) 1 U µ(i)t 1 2 U µ(i)t 2 3 U µt 3 20: if K < A µ(i) then 21: S µ B µ (:, :, 1 : K) 1 U µ 1 2 U µ 2 22: else 23: S µ B µ (:, :, :) 1 U µ 1 2 U µ 2 24: end if 25: S µ (:, :, j), S µ (:, :, k) = δ jk (δ jk :) 26: i i + 1 27: until i > 6 28: µ µ + 1 29: until µ > M 30: return S µ, µ = 1... M 6 1 6 6. Savas MATLAB

Algorithm 4 Input: S µ(i), µ = 1... M i = 1... 6 α ν ν = 1... N C µ(i) m µ = 1... M i = 1... 6 m = 1... 3 K β Output: S µ(i), µ = 1... M i = 1... 6 1: ν 1 2: repeat 3: if Algorithm5 α ν then 4: µ 5: i 1 6: repeat 7: m 1 8: repeat 9: C µ(i) m = C µ(i) m βα να T ν 10: U µ(i) m S µ(i) m 11: 12: m m + 1 13: until m > 3 14: if K < A µ(i) then 15: S µ B µ (:, :, 1 : K) 1 U µ 1 2 U µ 2 16: else 17: S µ B µ (:, :, :) 1 U µ 1 2 U µ 2 18: end if 19: S µ(i) (:, :, j), S µ(i) (:, :, k) = δ jk 20: i i + 1 21: until i < 6 22: end if (δ jk :) 23: until ν < N, N: 24: return S µ, µ = 1... M Algorithm 5 Input: X, S µ(i), µ = 1... M i = 1... 6, K Output: category 2: category 1 3: min 1 4: X X = 1 5: repeat 6: result 0 7: repeat 8: result result + (1 K i=1 X, Sµ (:, :, i) 2 ) 9: i i + 1 10: until i < 6 11: if min < 0 min > result then 12: min result 13: category µ 14: end if 15: µ µ + 1 16: until µ > M 17: return category

1 (%) Savas 8.4 4.6 4.4 Savas + 8 4.5 4.4 Savas + 8.2 4.4 4.2 8.1 4.4 4.2 5 MNIST 7 IAM Face Database ( ) 6 MNIST Intel(R)Xeon(R)CPU E5420 2.5GHz 8GBRAM Windows Vista Business β 2 6. 1 THE MNIST DATABASE of handwritten digits Web MNIST handwritten digit database 1 MNIST 28pixel 28pixel 60,000 10,000 ( 5) 0 9 10 120 1,000 1 Savas 2 Savas + 3 Savas + 4 (Savas + + ) 4 1 2 2 60 3 2 60 4 3 40 5 3 40 6 3 40 6 K 20 40 4 1 MNIST http://yann.lecun.com/exdb/mnist/ 8 ( ) 6 1 6. 2 IAM Face Database FKI Web IAM Face Database 2 IAM Face Database 512pixel 342pixel 30 5 2 10 ( 7) 96pixel 86pixel ( 8) 1 Savas 2 Savas + 2 9 1 Savas 0% 6. 3 MNIST K Savas 2 IAM Face Database http://www.iam.unibe.ch/fki/databases/iamfaces-database

1.2% 0.2% 0.3% K = 40 8% K = 36 8.1% 4.4% 4.2% Savas 0.1 0.2% K = 28 () IAM Face Database Savas 0% [6] M. A. O. Vasilescu and D. Terzopoulos: Tensortextures: Multilinear image-based rendering, ACM SIG- GRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, in press (2004). [7] M. S. Bartlett, J. R. Movellan and T. J. Sejnowski: Face recognition by independent component analysis, IEEE Transactions on Neural Networks, 13, pp. 1450 1464 (2002). [8] M. A. O. Vasilescu and D. Terzopoulos: Multilinear independent components analysis, IEEE COMPUTER SO- CIETY COMPUTER VISION AND PATTERN RECOG- NITION (CVPR 05), IEEE COMPUTER SOCIETY COMPUTER VISION AND PATTERN RECOGNITION (CVPR 05), pp. 547 543 (2005). [9] J. tao Sun, H.-J. Zeng, H. Liu and Y. Lu: Cubesvd: A novel approach to personalized web search, In Proc. of the 14 th International World Wide Web Conference (WWW), Press, pp. 382 390 (2005). [10] T. Kolda and B. Bader: The tophits model for higher-order web link analysis, Workshop on Link Analysis, Counterterrorism and Security at SDM06 (2006). [11] E. Oja: Subspace Methods of Pattern Recognition, Research Studies Press Ltd. (1983). [12] S. Ning, A. Masato and N. Yoshiaki: A handwrittern character recognition system by using improved directional element feature and subspace method, IEICE technical report. Pattern recognition and understanding, pp. 33 40 (1994). 7. HOSVD Savas Savas [1] L. D. Lathauwer, B. D. Moor and J. Vandewalle: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl, 21, pp. 1253 1278 (2000). [2] C. R.Bro: Parafac. tutorial and applications., Intel. Lab. Syst., vol.38, pp.149-171 (1997). [3] B. Savas: Handwritten digit classification using higher order singular value decomposition, Pattern Recognition, 40, 3, pp. 993 1003 (2007). [4] H. Wang and N. Ahuja: Facial expression decomposition, Proceedings of the Ninth IEEE International Conference on Computer Vision, 2, p. 958 (2003). [5] M. A. O. Vasilescu and D. Terzopoulos: Multilinear subspace analysis of image ensembles, Proc. Computer Vision and Pattern Recognition Conf (2003).