VLSI ISSCC. Nature, Science. Fig. 1. (entrainment) , (PD) 1996

Σχετικά έγγραφα
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Prey-Taxis Holling-Tanner

High order interpolation function for surface contact problem

X g 1990 g PSRB

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

4.6 Autoregressive Moving Average Model ARMA(1,1)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Magnetically Coupled Circuits

A summation formula ramified with hypergeometric function and involving recurrence relation


Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

2.1

Motion analysis and simulation of a stratospheric airship

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

2

Phase Response Curve of Spike Response Model

Section 8.2 Graphs of Polar Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

, Snowdon. . Frahm.

Fundamentals of Signals, Systems and Filtering

Geodesic paths for quantum many-body systems

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order RLC Filters

BandPass (4A) Young Won Lim 1/11/14

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Single-value extension property for anti-diagonal operator matrices and their square

Geodesic Equations for the Wormhole Metric

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Lecture 21: Scattering and FGR

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

«ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΡΑΔΙΟΦΩΝΙΚΟΥ ΣΤΑΘΜΟΥ AM ΜΕ ΤΡΑΝΖΙΣΤΟΡ»

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

The User Defined Functions of the Sonnet Lite free Electromagnetic Simulator. N.Ishitobi. Sonnet Giken Co. Ltd. Sonnet Lite S Sonnet Lite.

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

RF HB ) HB. MATLAB Spice

Variational Wavefunction for the Helium Atom

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Control Theory & Applications PID (, )

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Applying Markov Decision Processes to Role-playing Game

Finite Field Problems: Solutions

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Higher spin gauge theories and their CFT duals

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Matrices and Determinants

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Uniform Convergence of Fourier Series Michael Taylor

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Forced Pendulum Numerical approach

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Strain gauge and rosettes

Thermistor (NTC /PTC)

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Probability and Random Processes (Part II)

(As on April 16, 2002 no changes since Dec 24.)

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

Note: Please use the actual date you accessed this material in your citation.

[1] P Q. Fig. 3.1

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ER-Tree (Extended R*-Tree)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Numerical Analysis FMN011

Second Order Partial Differential Equations

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Quick algorithm f or computing core attribute

Transcript:

71 1 1 (injection locking) ().,,,,., Fig. 1 ( ) PC VLSI ISSCC,, ( [1]) Nature, Science ( ) (entrainment) 1990 199 1995 ( ), (PD) 1996 1997 001 (, ) 006 007 009 ( ), 3, 5 ( )

7 [][3] (A) (B) () (C) Fig. 1 : (locking range) ( ) Fig. A ω ( ) 1 ( ) [4] [5] [6] 1 Fig. (A) (B) (C) dα = ω ϵ sin α (1) α ω ( [7][8]) dx = F (x) + I(t) () x( R n ) I(t)( R n ) ( ) I(t)

73 VOL. 0 NO. JUN. 010 3 f(t) R x 0 ( R n ) ψ( [0, π] S) ( ) f () x = x 0 ψ dψ = ω + Z(ψ) f(t) (3) ω Z(ψ) Ω( ω) ψ ϕ = ψ Ωt ϕ dϕ = ω + Γ(ϕ), (4) Γ(ϕ) = Z(θ + ϕ)f(θ) θ 1 1 Γ(ϕ) ψ (4) [9] [3] (1) (4) Fig. B ϕ dϕ/ = 0 Γ (ϕ) < 0 Γ(ϕ + ) Γ(ϕ ) ( ω) 1:1 ( ω:ω 1:1) m:n ( ω:ω m:n) dϕ = ω+γ m/n(ϕ), (5) Γ m/n (ϕ)= Z(mθ+ϕ)f(nθ) Z 1 1 π π dθ π ISF[10] PPV[11]. Z [1][13] [14] (SPICE). 1 : [15][16] [15] f J[f] R[f] + λ f(θ) C (6) R[f] f (Fig. B ) R[f] = Γ(ϕ + ) Γ(ϕ ) = {Z(θ + ϕ + ) Z(θ + ϕ )}f(θ) (7) ϕ + ϕ Γ(ϕ) ϕ f(θ) C = 0 f 1 C C = 0 (6) λ (6) f(θ) C = 0 f R[f] f opt (f, λ) f (θ) = f opt [11] (4) (1)

4 74 (A) (C) (B) Fig. 3 f opt (θ) = 1 λ {Z(θ + ϕ +) Z(θ + ϕ )} (8) [15] λ = 1 Q/P P = f (θ), Q = {Z(θ+ ϕ + ) Z(θ + ϕ )} ϕ ± Z [15] ( ) R[f] S[f] = Γ (ϕ ) [16] 1 ( ) (8) ϕ ± (). : [17] 1 ϕ (4) 0 P1 ( f (θ) = P = ) 1:1 P ( ) 1:1 ( ) P3 1:1 m:n 1:1 P1 P P3 ( S1, S, S3 ) f p L p (S) f p f(θ) p 1 p = M <, (9) p 1 M p = (9) f = M f M p = 1 f = M f M

75 VOL. 0 NO. JUN. 010 5 p = (9) f = M f f(θ) (ess. sup) f(θ) < M ( θ S) f.1 (9) f(θ) = 0. (10),.1, maximize R[f] subject to f(θ) = 0, f p = M (11),.1, f p = M J[f] = R[f] + λ f(θ) f λ., J[f], (7) f g : J[f] = f(θ)[ Z(θ) + λ] f(θ)g(θ), (1) g(θ) = Z(θ)+λ, Z(θ) Z(θ + ϕ) Z(θ) ϕ ϕ + ϕ ϕ θ θ + ϕ θ. ( ) (11) R[f] S[f] = Γ (ϕ ) = f(θ)z (θ) (1) g(θ) g(θ) = Z (θ) g(θ) = Z(θ) + λ.1 J[f] (1) (Hölder s inequality)[18] fg 1 f p g q, (13) p q 1 p, q, p 1 +q 1 = 1 (13) (1) J[f] J[f] = fg fg = fg 1 f p g q = M g q (14) f g(= Z(θ) + λ) ( P1 P P3 )., Fig. C (a), (b), (c), 1 < p < ( p = ), p = 1, p = 3 1.. S1 1 < p < 1:1 ( f opt, p ) Lp(S) f opt, p Z (13) S p = 1 1:1 Z L 1 (S) ( f opt,1 ) S1 p 1 (13) p = 1, q = p = 1:1 ( f opt, ) L (S) Z S1 p p =, q = 1 S3 Z, f Z n, f m 1 Hodgkin-Huxley [16] Z Fig. C (d) Fig. 3C.

6 76 : Z(θ) = a 0 + j (a j cos jθ + b j sin jθ), f(θ) = c 0 + k (c k cos kθ + d k sin kθ), Z n (θ) a 0 + j (a nj cos njθ + b nj sin njθ), f m (θ) c 0 + k (c mk cos mkθ+d mk sin mkθ) 1 Γ m/n (ϕ) = Z(mθ + ϕ)f(nθ) Z, f Tsallis [19] [0] 100 Γ m/n (ϕ) = Z n (mθ + ϕ)f(nθ) = Z n (mθ + ϕ)f m (nθ), S1 S 1:1 Z Z n m:n f m (nθ) Fig. 3A Fig. 3B 1:1 1: 1: 1:1 Z n ( n = ), Fig. 3C Z n P1, P, P3 S1, S, S3 [17].1 [15][16] (1) () (3) m:n 3 [1][7][8][1][13] ( ) [1][] (p ),., ( [3]),,. Tsallis [4] 1 Z n, f m Z, f nj, mk m:1 (m:m=1:1 ) 1:1 B SCAT

77 VOL. 0 NO. JUN. 010 7 1 Kawasaki, K., Akiyama, Y., Komori, K., Uno, M., Takeuchi, H., Itagaki, T., Hino, Y., Kawasaki, Y., Ito, K. and Hajimiri, A., A millimeter-wave intra-connect solution, IEEE ISSCC Digest of Technical Paper, (010), 414 415.,,, 17 (007), 175 177. 3 Kuramoto, Y., Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984. 4 Adler, R., A Study of Locking Phenomena in Oscillators, Proc. IRE, 34[6] (1946), 351 357. 5 Kurokawa, K., Injection Locking of Microwave Solid-State Oscillators, Proc. IEEE, 61[10] (1973), 1386 1410. 6 Daikoku, K. and Mizushima, Y., Properties of Injection Locking in the Non-Linear Oscillator, Int. J. Electronics 31[3] (1971), 79 9. 7 Yamamoto, K. and Fujishima, M., A 44-µW 4.3- GHz Injection-Locked Frequency Divider with.3- GHz Locking Range, IEEE J. Solid-State Circuits, 40[3] (005), 671 677. 8 Kazimierczuk, M. K., Krizhanovski, V. G., Rassokhina, J. V. and Chernov, D. V., Injection-Locked Class-E Oscillator, IEEE Trans. Circuits and Systems I, 53[6] (006), 114 1. 9 Hoppenstea, F. C. and Izhikevich, E. M., Weakly Connected Neural Networks, Springer, New York, 1997. 10 Hajimiri, A. and Lee, T. H., A General Theory of Phase Noise in Electrical Oscillators, IEEE J. Solid-State Circuits, 33[](1998), 179 194. 11 Bhansali, P. and Roychowdhury, J., Gen-Adler: the Generalized Adler s Equation for Injection Locking Analysis in Oscillators, in Proc. IEEE Asia and South Pacific Design Automation Conference, (009), 5 57. 1 Tanaka, H.-A., Hasegawa, A., Mizuno, H. and Endo, T., Synchronizability of distributed clock oscillators, IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, 49[9](00), 171-178. 13 Nagashima, T., Wei, X., Tanaka, H.-A. and Sekiya, H., Numerical derivations of locking ranges for injection-locked class-e oscillator, in Proc. IEEE 10th International Conference on Power Electronics and Drive Systems, (013), 101-104. 14,,,, A, 89[3](006), 190 198. 15 Harada, T., Tanaka, H.-A., Hankins, M. J. and Kiss, I. Z., Optimal Waveform for the Entrainment of a Weakly forced Ooscillator, Phys. Rev. Lett. 105[8](010), 088301. 16 Zlotnik, A., Chen, Y., Kiss, I. Z., Tanaka, H.-A. and Li, J. S., Optimal Waveform for Fast Entrainment of Weakly Forced Nonlinear Oscillators, Phys. Rev. Lett., 111[](013), 0410. 17 Tanaka, H.-A., Optimal entrainment with smooth, pulse, and square signals in weakly forced nonlinear oscillators, Physica D, vol. 88(014), 1. 18 Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill, New York, 1987, 63 65. 19 Tsallis, C., Introduction to Nonextensive Statistical Mechanics, Springer, New York, 009. 0 Tanaka, H.-A., Synchronization limit of weakly forced nonlinear oscillators, J. Phys. A, 47[40], (014), 4000. 1,, 17[](007), 138 154.,, :, 1[4](011), 59 75. 3 Li, J. S., Ruths, J., Yu, T. Y., Arthanari, H. and Wagner, G., Optimal pulse design in quantum control: A unified computational method, Proc. of the National Academy of Sciences, 108[5](011), 1879-1884. 4 http://synchro4.ee.uec.ac.jp/ Abstract In this article, a universal mechanism governing entrainment limit is shown to exist under weak forcings. This underlying mechanism enables us to understand how and why entrainability is maximized; maximization of the entrainment range or that of the stability of entrainment for general forcings including pulse trains, and a fundamental limit of general m:n entrainment, are clarified from a unified, global viewpoint. These entrainment limits are verified in the Hodgkin-Huxley neuron model as an example.