Evaluation of Methods to Extract Important Scenes for Automatic Digest Generation from a Presentation Video

Σχετικά έγγραφα
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ER-Tree (Extended R*-Tree)


Automatic extraction of bibliography with machine learning

{takasu, Conditional Random Field

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Topic Structure Mining based on Wikipedia and Web Search

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+


Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Buried Markov Model Pairwise

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Arbitrage Analysis of Futures Market with Frictions

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Web DEIM Forum 2009 A7-1. Web. Web. Web. Web. 4 Wikipedia. Wikipedia. Web.

User Behavior Analysis for a Large2scale Search Engine

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Quick algorithm f or computing core attribute

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Reading Order Detection for Text Layout Excluded by Image

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Japanese Fuzzy String Matching in Cooking Recipes

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Ο ΡΟΛΟΣ ΤΟΥ ΜΗΤΡΙΚΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΑΙΔΙΚΟΥ ΑΣΘΜΑΤΟΣ

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

High order interpolation function for surface contact problem

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΙΤΑΛΙΚΗΣ ΦΙΛΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΛΟΓΟΤΕΧΝΙΑ-ΠΟΛΙΤΙΣΜΟΣ

, Evaluation of a library against injection attacks

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Probabilistic Approach to Robust Optimization

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Πρόσκληση. DOSSIER-Cloud DevOpS-based Software engineering for the cloud

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ

Homomorphism in Intuitionistic Fuzzy Automata


Simplex Crossover for Real-coded Genetic Algolithms

A research on the influence of dummy activity on float in an AOA network and its amendments

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

Περίληψη (Executive Summary)

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

DECO DECoration Ontology

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Study of urban housing development projects: The general planning of Alexandria City

Detection and Recognition of Traffic Signal Using Machine Learning

CONFIOUS: The Conference Nous Σύστημα Διαχείρισης Επιστημονικών & Ακαδημαϊκών Συνεδρίων. (

ΤΜΗΜΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΣΥΝΕΧΙΖΟΜΕΝΗ ΕΚΠΑΙ ΕΥΣΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS


Exhaustive Topic Detection and Query Expansion Support Based on Substance-Oriented Term Clustering

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A summation formula ramified with hypergeometric function and involving recurrence relation

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

Transcript:

DEWS2008 E4-1, 152-8552 2-12-1 ( ) 112-0002 1-1-17 152-8552 2-12-1 152-8550 2-12-1 E-mail: {hanhlh,tetsu}@de.cs.titech.ac.jp, thitiporn.lertrusdachakul@nts.ricoh.co.jp, yokota@cs.titech.ac.jp E- MPMeister e- Evaluation of Methods to Extract Important Scenes for Automatic Digest Generation from a Presentation Video Le HIEU HANH, Thitiporn LERTRUSDACHAKUL, Tetsutaro WATANABE, and Haruo YOKOTA, Department of Computer Science, Faculty of Engineering, Tokyo Institute of Technology Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552 Japan Application Lab, Software R&D Group, Ricoh Company, Ltd. Tomin-Nissei-Kasugacho Bldg.Koishikawa 1-1-17, Bunkyo-ku, Tokyo, 112-0002 Japan Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552 Japan Global Scientific Information and Computing Center, Tokyo Institute of Technology Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8550 Japan E-mail: {hanhlh,tetsu}@de.cs.titech.ac.jp, thitiporn.lertrusdachakul@nts.ricoh.co.jp, yokota@cs.titech.ac.jp Abstract In the recent years, the use of presentation video in E-learning is increasing. On the user s point of view, this often requires previewing the digest of such video before watching the original one. This paper proposes a number of methods of extracting important scenes for automatic digest generation digest from the presentation video which is recorded by MPMeister II - the tool for Multimedia Web Contents. The important scenes extractions are based on several factors, such as word frequency, specificity, duration and orders of the slides. Finally, the results of each methods are evaluated by comparing with the answer sets selected by testers. Key words e-learning, information extraction, video digest

%'&)(+*',!!! #"! #$ 1 1. E- ( ) MPMeister [1] UPRISE [2] ( 1 ) MPMeister ( ) 2. 3. MPMeister 4. 5. 6. 2. 2. 1 Sanderson [3] Yihong [4] Barzilay [5] 2. 2 [6] 2. 3 Jinjun [7] Marcus J.P ANSES [8] Liwei [9] UPRISE [2] [10] [11] [12] UPRISE UPRISE

BB, + 0 / $"+*, -/.1032 4 "!$#% & '( )!$#% & -. 57685:9<;>=@?@9<A<B BDCFE GIHKJLNMOLNP JLNMOLNPRQS 3. MPMeister 2 MPMeister ( ) Microsoft PowerPoint PowerPoint MPMeister PowerPoint PowerPoint MPMeister MPEG-7 (XML ) MPEG-7 MPEG-7 4. 2 MPMeister MPEG-7 4. 1 3 Sen [13] J-E Ontology [14] 4. 2 4. 2. 1 L l S = {s 1, s 2,..., s N } s i s i = [v i1, v i2,..., v im ] "!$#%'& 3 L 1 (!)#%'* S W = {w 1, w 2,..., w M } v ij W L l L l = [c l1, c l2,..., c ln ] c lk S s i c lk = [v i1, v i2,..., v im ] s i 3 L 1 s 1 c 11 s 2 c 12 L 1 = [c 11, c 12 ], S = {s 1, s 2}, s 1 = [v 11, v 12, v 13, v 14 ], s 2 = [v 21, v 22, v 23, v 24, v 25, v 26 ], v 11 =, v 12 =, v 13 =, v 14 =, v 21 =, v 22 =, v 23 =, v 24 =, v 25 =, v 26 =, W = {,,,,} 4. 2. 2 [15] p(v ij ) p(v ij )

ρ t v ij p(v ij ) = ρ bl v ij b l 0 v ij a ) I d (1) UPRISE [12] I d I d (c lk, θ) = I p (c lk ) t(c lk ) θ (2) t(c lk ) c lk θ I p I p(c lk ) = ( w x c lk c y L l ( v z c y,v z =w x p(v z))) (3) 3 L 1 MPMeister ρ t = 5 ρ bl = 1 c 11 (v 11 ) p(v 11 ) = 5 (v 14 ) p(v 14 ) = 1 I p (c 11 ) = 18, I p (c 12 ) = 25 b ) I dc UPRISE [12] I dc I dc (c lk, θ, δ, ε 1, ε 2 ) = j=γ+δ j=γ δ I d (c lk, θ) E(j γ, ε 1, ε 2 ) (4) δ E(j γ, ε 1, ε 2 ) E(x, ε 1, ε 2) = { exp(ε1x) (x < 0) exp( ε 2x) (x > = 0) θ ε θ = 4, ε 1 = 5.0, ε 2 = 0.5 4 ε 1 > ε 2 c ) I dr idf 1 I d I dc I dr I drc I df I dr I dr (c lk, θ) = w x W app(c lk, w x ) app(c y, w x ) I pl(c lk ) t(c lk ) θ (5) c y L l I pl I pl (c lk ) = p(v x ) (6) v x c lk app(c lk, w x ) c lk w x d ) I drc I drc I drc (c lk, θ, δ, ε 1, ε 2) = j=γ+δ e ) j=γ δ I dr (c lk, θ) E(j γ, ε 1, ε 2) I df (7) I df I df (c lk, θ) = w x W 1 4. 2. 3 1 app(c lk, w x ) I d(c lk, θ) (8) 4. 3

3 F A B F F I d 0.45 0.31 0.37 0.67 0.40 0.50 I dc 0.36 0.24 0.29 0.83 0.42 0.56 I dr 0.45 0.33 0.38 0.50 0.33 0.40 I drc 0.45 0.22 0.30 0.50 0.25 0.33 I df 0.45 0.22 0.30 0.83 0.42 0.56 4 2 A 59 1548 26 85 B 32 1043 33 165 C 31 1674 54 160 D 44 1286 29 110 E 98 4256 43 48 F 67 3306 49 68 Windows Media 4 5. ρ t θ 5. 1 5. 1. 1 A B 2 5. 1. 2 6 6 4 C C F F F = = F = 2 + (2) (4) (5) (7) (8) ρ t = 5, b l ρ bl = 1 θ = 1 δ = 3 ε 1 = 5 ε 2 = 0.5 5. 1. 3 F 3 5 6 5 6 5 6 3 A B F 5 A MPMeister 6 B 32 32 11

>=< ; A@? CB 1230/ 67 54 KK << "" $$ WWW && "" ## (( $$ ** WWWW && ++ )) -- // DDD -- WWW -- KKKK WWWW -- TTT \\\ << -- III :987 ;<=?> = = FFF!! ## %% && )) ++ )) )) FF )) \\ QQ ))!!" "!# #%$ $!& &(' ')*' ) ') ))) + +,' + + ')))) -- ' ')))) -+' '))))... /8 // /0 /1 /2 /3 /4 /5 /6 /7 08 0/ 00 01 02 03 04 05 18 1/ 06 07 10 11 12 13 14 15 16 17 28 2/ 20 21 22 23 24 25 26 27 38 3/ 30 31 32 33 34 35 36 37 99 :::: ;;;; <=> <?@ ABCDE DE GF FFFHHHH = = D= = JJJJ> > > >?? KK?? KK@ @@@ ABC DE < <FH I 5 A! #" "%$ $'& &)( ('* *,+ +.- -0/ /1- -2/43 /435- -2/46 /46 - -2/4673 /46738- -2/:9 ;D ;; ;< ;;=> ;? ;;@A ;B <D ;C <; <<=> <? <<@A <B <C =D =; =<FEHGJI EHGJILK K M7N2O7P0Q7R SSUT7V T7V2W XXXX YYYY ZJ[ X7Y MHNJOHP0Q MJNJOHP QQQ RRRR SUT7V SSS T7V2W T2]J^ X7Y Z7[ ZU[ X2YU\ 6 B 11 4 7 4 I df F 7 6 B "!!$# #$% %$& &(' '*) ),+ +-) ),+/. +/.0) ),+/1 +/12) ),+/13. +/13.4) ),+65 7@ 77 78 779: 7; 77< 7> 8@ 7? 8887 889: 8; 88< 8> 8? 9@ 9 7BADC6E F3GIH6JLK GIH6JLKNMLO3P MLO3PNQLR QSRNTLUIV WDX6TIULV GYHDJDKZMLO3P GYH6JNK MLO[PLQNR QNRNTLUIV TLUIVSF F WLX6T,ULV T,ULVS\ \YQ QL]L^ 7 B () 4 B F ( ) F F I d 0.67 0.40 0.50 0.83 0.45 0.59 I dc 0.83 0.42 0.56 1.00 0.43 0.60 I dr 0.50 0.33 0.40 0.67 0.44 0.53 I drc 0.50 0.25 0.33 0.83 0.38 0.53 I df 0.83 0.42 0.56 0.83 0.42 0.56 5. 2 (1) ρ t θ 5 5. 2. 1 1 C D E F 2 5. 2. 2 1 2 2 ρ t 1 10 1 F F ρ t θ 0 5 0.5 F

8 ρ t F 10 θ 9 θ F 11 θ 5. 2. 3 ρ t θ F 8 9 8 ρ t F 9 F θ = 0 θ F θ θ 10 11 θ > 0 θ θ θ 8 9 I df F 6. 5 3

PowerPoint 18 (DEWS2007) pp.e1-3 2007. [13] Sen http://www.mlab.im.dendai.ac. jp/ yamada/ir/morphologicalanalyzer/sen.html. [14] An Experimental Japanese - English Ontology, http: //www.kanzaki.com/docs/sw/jwebont.html. [15] H. Luhn, A Statistical Approach to Mechanized Encoding and Searching of Literary Information, IBM Journal of Research and Development, vol.1, no.4, pp.309-317, 1957. (19024028) CREST 21 COE [1] Ricoh Japan, MPMeister II Ricoh Japan, http://www. ricoh.co.jp/mpmeister. [2] H. Yokota, T. Kobayashi, T. Muraki, and S. Naoi, UP- RISE: Unified Presentation Slide Retrieval by Impression Search Engine, IEICE Trans. on Info. and Syst., vol.e87- D, no.2, pp.397-406, 2 2004. [3] M.Sanderson, Accurate User Directed Summarization from Existing Tools, Proc. of the 7th International Conference on Information and Knowledge Management (CIKM98), 1998. [4] Y. Gong, and X. Liu, Generic Text Summatization Using Relevance Measure and Latent Semantic Analysis, Proc. of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp.19-25, 2001. [5] R. Barzilay, and M. Elhadad, Using Lexical Chains for Text Summarization, Proc. of the Intelligent Scalable Text Summarization Workshop (ISTS 97), 1997. [6] A Study on Statistical Methods for Automatic Speech Summarization Ph.D thesis Tokyo Institute of Technology 2002. [7] J. Wang, C. Xu, E. Chng, and Q. Tian, Sport Highlight Dectection from Keyword Sequences using HMM, Proc. of IEEE International Conference on Multimedia and Expo, ICME 04, vol.1, pp.599-602, 2004. [8] M.J. Pickering, L. Wong, and S.M. Rüer, Image and Video Retrieval, Springer Berlin / Heidelberg, 2003. [9] L. He, E. Snocki, A. Gupta, and J. Grudin, Auto- Summarization of Audio-Video Presentation, Proc. of the seventh ACM international conference on Multimedia (Part 1), pp.489-498, 1999. [10] vol.j88-d-i no.3 pp.715-726 3 2005. [11] 17 (DEWS2006) 2006. [12]