Vol. 37 ( 2017 ) No. 5. J. of Math. (PRC) : A : (2017) , DNA,

Σχετικά έγγραφα
Prey-Taxis Holling-Tanner

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Quick algorithm f or computing core attribute

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Congruence Classes of Invertible Matrices of Order 3 over F 2

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Buried Markov Model Pairwise

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ER-Tree (Extended R*-Tree)

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Research on Economics and Management

Research on model of early2warning of enterprise crisis based on entropy

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

High order interpolation function for surface contact problem

Approximation Expressions for the Temperature Integral

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

Inferring regulatory subnetworks through the analysis of genome-wide expression profiles

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Introduction to Bioinformatics

A Systematic Review of Procalcitonin for Early Detection of Septicemia of Newborn

Wavelet based matrix compression for boundary integral equations on complex geometries

Study of urban housing development projects: The general planning of Alexandria City

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE FACULTY OF INFORMATICS AND TELECOMMUNICATIONS

Identification of Fish Species using DNA Method

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

CorV CVAC. CorV TU317. 1

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Motion analysis and simulation of a stratospheric airship

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Supporting Information

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

, -.

Splice site recognition between different organisms

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

A summation formula ramified with hypergeometric function and involving recurrence relation

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Προσδιορισμός Σημαντικών Χαρακτηριστικών της Αυθόρμητης Δραστηριότητας Απομονωμένου Εγκεφαλικού Φλοιού in vitro

Numerical Analysis FMN011

Statistical Inference I Locally most powerful tests

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Approximation of distance between locations on earth given by latitude and longitude

TGFp FSH INH INH

PACS: Ox, Cw, a, TP

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Area Location and Recognition of Video Text Based on Depth Learning Method

Cellular Physiology and Biochemistry

IMES DISCUSSION PAPER SERIES

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Homomorphism in Intuitionistic Fuzzy Automata

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Εφαρμογές της τεχνολογίας επίγειας σάρωσης Laser στις μεταφορές

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

DOI /J. 1SSN

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

A method for identifying TSS from CAGE data using a Genomic Signal Processing approach

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Βιοπληροφορική. Μαργαρίτα Θεοδωροπούλου. Πανεπιστήμιο Θεσσαλίας, Λαμία 2016

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Η Διαγενειακή Αλληλεπίδραση Τρίτης Γενιάς και Τρίτης Ηλικίας και οι Αντοχές της Ελληνοαυστραλιανής Ταυτότητας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Reading Order Detection for Text Layout Excluded by Image

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A research on the influence of dummy activity on float in an AOA network and its amendments

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ

X g 1990 g PSRB

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

Transcript:

Vol. 37 ( 217 ) No. 5 J. of Math. (PRC) 1, 2, 3 (1., 4372) (2., 4379) (3., 437) :.,,,.,,. : ; ; ; MR(21) : 92B5 : O212.4; O212.5 : A : 255-7797(217)5-193-8 1,.,, [1,2] [3,4],.,, [5]. -, [6]. 1,.,,., DNA,, [7].,,.,.,,.,,. : 215-1-6 : 215-5-6 : (11275259); (9133113). : (199 ),,,, :.

194 Vol. 37 [8],. 2,,. 2.1. PPI, G = (V, E) [9], V V = N, E E. G A, i j, A ij = 1, A ij =,,. N T, N T F. A F. i j, A ij = 1, t, i j, F it > F jt >, i j t., T, T. 2.2,,,, 1. 2.2.1 7 T,, 7 MCL MCODE MINE ClusterONE DPClus SPICi CoAch. 1:

No. 5 : 195 MCL PPI, Expansion Inflation [1,11]. MCODE, PPI,, ( ) [11,14]. MINE MCODE,,, [13]. DPClus, CP [11,14]. ClusterONE, [15]. CoAch,, 1,, 2 [11,16]. SPICi, SPICi,,,,,, [17]. 2.2.2, 7, 7 V 1, V 2,, V 7, V i (i = 1 : 7) N P i (i = 1 : 7), N, P i i. V i, N i, N j,, N k e (1 <= e <= P i ), e, N i, N j,, N k 1,. 7 V 1, V 2,, V 7, V = [V 1, V 2,, V 7 ], V N P (P = 7 P i ),, T. i=1,., [18,19]. Lee Seung, min W,H (V ij log i,j V ij (W H) ij V ij + (W H) ij ). (W ia V iu /(W H) iu (H au V iu /(W H) iu i u H au H au, W ia W ia. H av k W ka W (N K ) H (K P ), W,, U ik = W ik /W i.. U, τ, U ij > τ, N i K j.,, K τ. v

196 Vol. 37 3 3,, <2. 3 3.1 BIOGPS Affymetrix 83 [2], BioGrid [21] -, 83, [2], >1 26, 26 : BDCA 4+ CD15+ CD19+B CD4+ T CD56+ CD71+ CD8+T k - 562 (MOLT-4) HL-6 burkitt(daudi) burkitt(raji). 3.2,, CORUM [22], 2151 324, 3. 3.3. ACC [23],,. MMR (the Maximum Matching Ratio) Paccanaro. oid ACC Thyroid MMR B cell ACC.35.6.25 k=8 k=1 k=12.3.5.2 k=14.25.2.4.15.15.3.1.1.5.2.5.5 1.5 1.1.5 1 Cortex ACC Prefrontal Cortex MMR T cell ACC T cell MMR.35.6.25.3.5.2.25.2.4.15.15.3.1.1.5.2.5.5 1.5 1.1.5 1 2: τ

No. 5 : 197 3.4 MCL,, 3. 5.,.2; MCODE 3, ; MINE 3, ; DPCLUS, d cp,.7.5; ClusterOne ; CoAch ω,,.225.925,.5; SPICi,.1 1,.1. 7, ACC MMR. 3.5, K τ, K,, 6 16, 2, τ,.9,.1. 26, 1. 1: ACC - coach Dpclus mcl mcode mine cluster one spici NMF BDCA 4+++.34.44.42.27.42.5.46.51.67.64.54.49.61.67.68.68 CD15+++.35.39.38.28.44.45.45.51.6.45.43.32.49.52.5.6 CD19+++B.39.5.44.29.46.5.43.55.38.46.43.29.43.52.49.52.31.39.39.25.37.47.38.47 CD4+++ T.41.51.46.33.53.56.52.58 CD56+.35.47.44.29.44.51.44.52 CD71+++.46.56.48.43.51.61.59.62 CD8+++T.37.47.47.3.46.52.5.54.7.64.54.52.64.68.68.71.62.62.56.41.61.63.62.63 k - 562.69.69.56.51.66.71.65.71.59.52.53.42.52.55.53.59 HL-6.63.6.59.47.56.64.62.64 burkitt(daudi).34.45.42.28.43.51.45.5 burkitt(raji).63.57.52.44.59.65.57.63.41.52.44.33.47.55.56.58.39.51.46.35.49.55.52.58.52.56.52.32.62.56.54.64.71.67.53.55.67.66.62.73.47.5.49.27.51.48.52.6.73.66.59.49.64.68.7.74.64.63.59.43.59.63.62.65.65.64.62.51.63.63.65.67, 6 2.1

198 Vol. 37,, 4, : B T, 2. 3.6, 7 26. 7, ACC MMR 26, 1, ACC 24,. 26 7,, 13%. 7, : 51.61% 33.33% 39.53% 122.22% 27.3% 25.% 27.91%, 3,, MCODE, 26, 3% ; MCL, 8% 4%; CLusterONE, 1.96% 3.8%. 25 2 15 CoAch DPClus MCL MCODE MINE Cluster ONE SPICi 1 5.2.4.6.8 1 3:, NMF, 7. 4,.,, 1(TNPO1) CD4 PPP3CA TNPO3, SRP19 TNPO3, IPO5 IPO7 NUTF2 RAN SRP19,, TNPO1 TNPO3,.,, PPI,.,,.,, ACC, MMR,,,,

No. 5 : 199. [1] Aebersold R, Mann M. Mass spectrometry-based proteomics[j]. Nature, 23, 422(6928): 198 27. [2] Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[j]. Nature, 22, 415(6868): 18 183. [3] Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome[j]. Proceed. National Acad. Sci. United States America, 21, 98(8): 4569 4574. [4] Uetz P, Giot L, Cagney G, Mansfield T A, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[j]. Nature, 2, 43(677): 623 627. [5] Gavin A C, B sche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[j]. Nature, 22, 415(6868): 141 147. [6] Lage K, Karlberg E O, Størling Z M, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders[j]. Nature Biotechnology, 27, 25(3): 39 316. [7] Lo K, Raftery A E, Dombek K M, et al. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data[j]. BMC Sys. Bio., 212, 6(2): 11. [8] Vasmatzis G, Klee E W, Kube D M, Therneau T M, Kosari F. Quantitating tissue specificity of human genes to facilitate biomarker discovery[j]. Bioinformatics, 27, 23(11): 1348 1355. [9] Li D, Li J, Ouyang S, Wang J, Wu S, Wan P, Zhu Y, Xu X, He F. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness[j]. Proteomics, 26, 6(2): 456 461. [1] Enright A J, Dongen S V, Ouzounis C A. An efficient algorithm for largescale detection of protein families[j]. Nucleic Acids Res, 212, 3(7): 1575 1584. [11],,,. [J]., 214, 4(4): 577 593. [12] Bader G D, Hogue C W V. An automated method for finding molecular complexes in large protein interaction networks[j]. BMC Bioinformatics, 23, 4(1): 2. [13] Rhrissorrakrai K, Gunsalus K C. MINE: module identification in networks[j]. BMC Bioinformatics, 211, 12(1): 192. [14] Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks[j]. BMC Bioinformatics, 26, 7(1): 27. [15] Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks[j]. Nature Methods, 212, 9(5): 471 472. [16] Wu M, Li X L, Kwoh C K, Ng C K. A core-attachment based method to detect protein complexes in PPI networks[j]. BMC Bioinformatics, 29, 1(1): 169. [17] Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks[j]. Bioinformatics, 21, 26(8): 115 1111. [18] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[j]. Nature, 1999, 41(6755): 788 791. [19] Ding C, He X F, Simon H D. On the equivalence of nonnegative matrix factorization and spectral clustering[j]. Siam Intern. Confer. Data Min., 25, 5: 66 61.

11 Vol. 37 [2] Lopes T J, Schaefer M, Shoemaker J, Matsuoka Y, Fontaine J F, Neumann G, Andrade-Navarro M A, Kawaoka Y, Kitano H. Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases[j]. Bioinformatics, 211, 27(17): 2414 2421. [21] Chatr-aryamontri A, Breitkreutz B J, Heinicke S, et al. The Biogrid interaction database: 213 update[j]. Nucleic Acids Research, 213, 41(2): 816 823. [22] Havugimana P C, Hart G T, Nepusz T, et al. A census of human soluble protein complexes[j]. Cell, 212, 15(5): 168 181. [23] Li X, Wu M, Kwoh C K, et al. Computational approaches for detecting protein complexes from protein interaction networks: a survey[j]. BMC Genomics, 21, 11(4): S3. [24] Ou-Yang L, Dai D Q, Zhang X F. Protein complex detection via weighted ensemble clustering based on bayesian nonnegative matrix factorization[j]. Plos One, 213, 8(5): 639 642. [25] Ou-Yang L, Dai D Q, Li X L, Wu M, Zhang X F, Yang P. Detecting temporal protein complexes from dynamic protein-protein interaction networks[j]. BMC Bioinformatics, 214, 15(1): 161 165. [26] Zhang X F, Dai D Q, Ou-Yang L, Yan H. Detecting overlapping protein complexes based on a generative model with functional and topological properties[j]. BMC Bioinformatics, 214, 15(2): 836 842. [27] Zhang W, Zou X F. A new method for detecting protein complexes based on the three node cliques[j]. IEEE/ACM Trans Comput. Biol. Bioinform, 215, 12(4): 879 886. [28]. [J]., 26, 26(1): 67 7. IDENTIFICATION OF THE TISSUE SPECIFIC PROTEIN COMPLEXES DING Xia 1, ZHANG Xiao-fei 2, YI Ming 3 (1.School of Mathematics and Statistics, Wuhan University, Wuhan 4372,China) (2.School of Mathematics and Statistics, Central China Normal University, Wuhan 4379, China) (3.School of Science, Huazhong Agricultural University, Wuhan 437, China) Abstract: In this paper, we study the identification problem of tissue-specific protein complexes. By using a variety of typical clustering algorithm to cluster the network, we construct a tissue-specific protein-protein interaction network based on the protein-protein interaction networks as well as the tissue-specific gene expression data, then merge the results with non-negative matrix factorization model to obtain tissue-specific protein complexes. The results show that clustering effect has been significantly improved, and can identify tissue-specific protein complexes. Keywords: protein-protein interaction networks; complexes identification; tissue-specific; non-negative matrix factorization 21 MR Subject Classification: 92B5