Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)
|
|
- Ἀντιόπη Καλάρης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ),,, EM,,. :,,, P-. : O (count data), Poisson Poisson,, (zero-inflation).,.,, ;,,.,, Fahrmeir Echavarrri (2006) ; Yip Yau (2005) ; Xie et al. (2009, 2008) Poisson Score ; Ghosh et al. (2006) Bayesian.,,,.,,,,. Davidian Giltinan (1995), Diggle et al. (2002), Lin Carroll (2001), He et al. (2002), (2006). Zhang et al. (10BTJ001) ( ) ,
2 312 (1998), (2006) Lin Carroll (2001),. : Poisson ; P- ; EM ;. 2., Poisson (Zero-Inflated Generalized Poisson Distribution), ZIGP. Y ZIGP(φ, λ, α), φ + (1 φ)p(0; λ, α), y = 0; P{Y = y} = (1 φ)p(y; λ, α), y > 0, p(y; λ, α) Poisson, p(y; λ, α) = 1 ( λ ) y(1 { + αy) y 1 exp y! 1 + αλ α, λ. Y, Y α 0, Poisson. λ(1 + αy) 1 + αλ E[Y λ, α] = λ, Var [Y λ, α] = λ(1 + αλ) 2, Y ZIGP(φ, λ, α), Y E[Y φ, λ, α] = (1 φ)λ, φ = 0, ZIGP GP. }, y = 0, 1, 2,..., Var [Y φ, λ, α] = (1 φ)λ[(1 + αλ) 2 + φλ, (2.1),, Y ij, y ij, i j i j, t ij, x ij, z ij, i = 1, 2,..., n, j = 1, 2,..., n i, (y ij, x ij, z ij, t ij )., Y ij ZIGP(φ ij, λ ij, α),, α, φ ij λ ij ( Wu Zhang (2006)). logit(φ ij ) = zij T γ + g(t ij) + u i, log(λ ij ) = x T ij β + h(t ij) + v i, (2.2)
3 : 313 γ β z ij x ij, g( ) h( ),, u i v i, (u T i, vt i ) N(0, Σ)., x ij z ij,, (2.1) (2.2) Poisson. 3. P-,,,,,.,, (P- ). Green Silverman (1994), (2.1) (2.2) PL(γ, β, g, h) = l(y; φ, λ) 1 2 λ 1 (g (t)) λ 2 (h (t)) 2 dt, (3.1) λ 1, λ 2 > 0, l(y; φ, λ) = n n i { I(y ij = 0) log [φ ij + (1 φ ij )p(0; λ ij, α)]f(ω i ; Σ)dω i i=1 j=1 + I(y ij > 0) log [1 φ ij p(y ij ; λ ij, α)]f(ω i ; Σ)dω i }, (3.2) ω i = (u T i, vt i ), f(ω i; Σ)., Yu et al. (2002), Ruppert et al. (2003), g(t) = τ 0 + τ 1 t + + τ q t q + K τ q+k (t h k ) q +, k=1 h(t) = δ 0 + δ 1 t + + δ l t l + K δ l+k (t h k ) l +, w+ k = [max(0, w)] k, {h k } K k=1, k=1 τ = (τ 0, τ 1,..., τ q+k ) T, δ = (δ 0, δ 1,..., δ l+k ) T, B 1 (t) = {1, t,..., t q, (t h 1 ) q +,..., (t h k) q + }T, B 2 (t) = {1, t,..., t l, (t h 1 ) l +,..., (t h k ) l +} T, g( ) h( ) g(t) = τ T B 1 (t), h(t) = δ T B 2 (t). Yu et al. (2002), 5 10,, ;, 10,, K = 15.
4 314, Yu et al. (2002) ( g(t)) 2 dt (ḧ(t))2 dt τ T Kτ δ T Kδ, K t ;, Wu Zhang (2006), [rank(k T K)/3],, q = l = EM (2.1) (2.2), (3.1) (3.2),,,,, EM, ω = (u, v). D c = (D o, D m ), D m ω,, D o. PL(γ, β, δ, τ, Σ D c ) PL(γ, β, δ, τ, Σ D c ) = l 1 (φ, λ) + n log f(ω i ; Σ) 1 2 Nλ 1τ T Kτ 1 2 Nλ 2δ T Kδ, (4.1) l(φ, λ) = n N = n n i, λ 1, λ 2. i=1 i=1 j=1 (4.1) EM. E-step: M-step: i=1 n i {I(y ij = 0) log[φ ij + (1 φ ij )p(0; λ ij, α)] + I(y ij > 0) log[1 φ ij p(y ij ; λ ij, α)]}, Q(ψ ψ (m) ) = E[PL(γ, β, δ, τ, Σ D c ) D o, ψ (m) ]; ψ (m+1) = arg max ψ [Q(ψ ψ(m) )]. ψ = (γ, β, δ, τ, Σ), ψ (m) m. E,, Metropolis f ω y ( ), MonterCarlo., f(ω), ω, ω, ω, q(ω, ω ) = min {1, f ω y(ω y, γ, β, τ, δ, Σ)f(ω) } f ω y (ω y, γ, β, τ, δ, Σ)f(ω. ) M,, Σ Σ = 1 J J (ω (j) ) T ω (j), j=1
5 : 315 {ω (j) } J j=1 Metropolis. θ = (γ, β, δ, τ), [ PL(θ, Σ Dc ) ] E = 0, θ Newton-Raphson θ. λ 1, λ 2, GCV(λ 1, λ 2 ) = (2N) 1 Y 1 HY 1 2 {1 (2N) 1 tr(h)} 2, Y 1 = (M T, Y T ), Y T {y ij } (i = 1, 2,..., n, j = 1, 2,..., n i ) N, M T Y T, y ij = 0, M ij = 1, 0. H C = ( B1 0 0 B 2 ) H = SC(C T SC + ) 1 C T,, S = ( S1 0 0 I ), = ( λ1 K 0 0 λ 2 K S 1 = diag(exp{z T ijγ + g(t ij ) + u i }/[1 + exp{z T ijγ + g(t ij ) + u i }] 2 ). λ 1 GCV λ 2, λ 2 = λ 2, GCV λ 1 = λ 1, (λ 1, λ 2 ).. : (1) ψ (0), m = 0; (2) GCV GCV λ (m) 1, λ (m) 2 ; (3) EM ψ (m+1) ; (4) m = m + 1, (2),. 5., 5.1 ),,, Poisson : Y ij ZIP(φ ij, λ ij ), logit(φ ij ) = γ 0 + γ 1 x 1ij + γ 2 x 2i + u i + g(t ij ); log(λ ij ) = β 0 + β 1 x 1ij + β 2 x 2i + v i + h(t ij ),
6 316 i = 1, 2,..., n, j = 1, 2,..., n i, x 1ij U[ 1, 1], x 2i { 1, 1}, t ij U[ 2, 2], (u i, v i ) T N(0, Σ), Σ ( ) ( ) σ11 σ Σ = =. σ 21 σ h(t) = sin(πt/2) 1 + 2t 2, g(t) = sin(πt/2). [sign(t) + 1] β 0 = 1.5, β 1 = 1, β 2 = 2, γ 0 = 2, γ 1 = 0.5, γ 2 = 1, n = 50, n i = 20, 1000, 1. λ , λ , 1, 2 (,, 5% 95% ). 1 β 0 β 1 β 2 γ 0 γ 1 γ t t 1 g(t) 2 h(t) 5.2, ( 10BTJ001 ) ,, 47,,., (y), (x 1 ), BMI(x 2, (kg)/ (m 2 )) (t),, 10, 200.
7 : 317 y, y > 0 Poisson, α = ZIGP, y ij ZIGP(φ ij, λ ij, α), i = 1, 2,..., 10 ( ), j = 1, 2,..., 200 ( ). logit(φ ij ) = γ 0 + γ 1 x 1ij + γ 2 x 2ij + u i + g(t ij ); log(λ ij ) = β 0 + β 1 x 1ij + β 2 x 2ij + v i + h(t ij ). 2, 3, 4. 2 β 0 β 1 β 2 γ 0 γ 1 γ age age 3 g( ) 4 h( ) [1] Fahrmeir, L. and Echavarrri, L.O., Structured additive regression for overdispersed and zero-inflated count data, Applied Stochastic Models in Business and Industry, 22(5)(2006), [2] Yip, K.C.H. and Yau, K.K.W., On modeling claim frequency data in general insurance with extra zeros, Insurance: Mathematics and Economics, 36(2)(2005), [3] Xie, F.C., Wei, B.C. and Lin, J.G., Score test for zero-inflated generalized Poisson mixed regression models, Computational Statistics & Data Analysis, 53(9)(2009), [4] Xie, F.C., Wei, B.C. and Lin, J.G., Assessing influence for pharmaceutical data in zero-inflated generalized Poisson mixed models, Statistics in Medicine, 27(8)(2008), [5] Ghosh, S.K., Mukhopadhyay, P. and Lu, J.C., Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136(4)(2006), [7] Davidian, M. and Giltinan, D.M., Nonlinear Models for Repeated Measurement Data, Chapman and Hall, [7] Diggle, P.J., Liang, K.Y. and Zeger, S.L., Analysis of Longitudinal Data, Cambridge University Press, 2002.
8 318 [8] Lin, X.H. and Carroll, R.J., Semiparametric regression for clustered data, Biometrika, 88(4)(2001), [9] He, X.M., Zhu, Z.Y. and Fung, W.K., Estimation in semiparametrics model for longitudinal data with unspecificed dependence structure, Biometrika, 89(3)(2002), [10],,,, 25(2)(2009), [11] Zhang, D., Lin, X. and Sower, M.F., Semiparametric stochastic mixed model for longitudinal data, Journal of the American Statistical Association, 93(442)(1998), [12] Wu, H. and Zhang, J.T., Nonparametric Regression Methods for Longitudinal Data Analysis, Wiley Interscience, [13] Green, P.J. and Silverman, B.W., Nonparametric Regression and Generalized Linear Models, Chapman and Hall, [14] Yu, Y. and Ruppert, D., Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 97(460)(2002), [15] Ruppert, D., Wand, M.P. and Carroll, R.J., Semiparametric Regression, Cambridge University Press, Penalized Likelihood Estimation of a Class of Zero-Inflated Semiparametric Mixed-Effect Model Shi Hongxing (School of Primary Education, Chuxiong Normal University, Chuxiong, ) In this paper, we consider an extension of semiparametric linear mixed-effect model to a class of longitudinal data or clustered data with zero-inflation and propose a novel semiparametric mixed model. Based on the maximum penalized likelihood estimation and EM algorithm, we give a method for our proposed model which may estimate both of the parameters and nonparameters simultaneously. In the method, we use GCV to choose the smoothing parameter.finally, we study a simulation analysis and one real data set to illustrate the proposed method. Keywords: Zero-inflation, semiparametric model, penalized likelihood, P-spline. AMS Subject Classification: 62G05.
552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(
2012 10 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 2012 (,, 675000) Poisson,,, Gibbs, BIC.,. :,, Gibbs, BIC. : O212.8. 1. (count data), Poisson Poisson., (zeroinflation).,.,,
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)
2016, 31(2): 127-135 Bayesian 1, 2 (1., 010021; 2., 201306) : (heterogeney).,. Gibbs Bayesian.,.. : ; Bayesian ; ; Gibbs ; Metropolis-Hastings : O212.8 : A : 1000-4424(2016)02-0127-09 1 Aigner (1977) [1]
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Multilevel models for analyzing people s daily moving behaviour
Multilevel models for analyzing people s daily moving behaviour Matteo BOTTAI 1 Nicola SALVATI 2 Nicola ORSINI 3 13th European Colloquium on Theoretical and Quantitative Geography Lucca 5th - 9th September,
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
ADT
2015 12 41 12 December 2015 Journal of Beijing University of Aeronautics and Astronautics Vol 41 No 12 http bhxb buaa edu cn jbuaa@ buaa edu cn DOI 10 13700 /j bh 1001-5965 2014 0790 1 2 * 1 2 1 1 100191
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ Πρώτο Πτυχίο: Μαθηματικά, 1979 Εθνικό Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών MSc: Στατιστική, 1983 McGill University, Department of Mathematics
ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.391-397 ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE
Conjoint Conjoint The Problems of Price Attribute by Conjoint Analysis Akihiko SHIMAZAKI * Nobuyuki OTAKE +, Conjoint - Conjoint. / 0 PSM Price Sensitivity Measurement Conjoint 1 2 + Conjoint Luce and
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών
Βιογραφικό Σημείωμα Προσωπικά στοιχεία Όνομα: Σταύρος Επώνυμο: Κουρούκλης Έτος γέννησης: 1952 Τόπος γέννησης: Ληξούρι Κεφαλλονιάς Στρατιωτική θητεία: Φεβρουάριος 2002 Οκτώβριος 2003 Οικογενειακή κατάσταση:
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος
Βιογραφικό Σημείωμα (τελευταία ενημέρωση 20 Ιουλίου 2015) Προσωπικές Πληροφορίες Όνομα Δημήτρης Φουσκάκης Ημερομηνία γέννησης Τόπος γέννησης Οικογενειακή κατάσταση 14 Ιουλίου 1973 Αθήνα Έγγαμος Εθνικότητα
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Sparse Modeling and Model Selection
15 Sparse Modeling and Model Selection L L L β β δ>0 limp(β β>δ)=0 n (β β)n (0, ) n p =(,, ) n {(, )i=1,, n} =(,, ) X = (,, ) =(,, ) X X n X =0, j=1,, p. =0, 1 n =1, X =Xβ+ε. β=(β, β ) ε ε N (0, σ I )
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
«ΣΠΟΥΔΑΙ», Τόμος 41, Τεύχος 2ο, Πανεπιστήμιο Πειραιώς «SPOUDAI», Vol. 41, No 2, University of Piraeus MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Του Πάνου Αναστ. Πανόπουλου Οικονομικό
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2 3, (, 76 ;2, 749 ; 3, 64) :, ;,, ;, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ 76 104 34 ΑΘΗΝΑ ΤΗΛ. 2108203111 FAX: 2108230488 URL: http://www.statathens.aueb.gr ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Γιώργος Γιαννής, Παναγιώτης Παπαντωνίου, Ελεονώρα Παπαδημητρίου, Αθηνά Τσολάκη Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία
Κύρια σημεία Εργασίες στη Στατιστική Μεθοδολογία Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Κατηγορίες άρθρων Στατιστικά Περιοδικά Βιβλιογραφική Έρευνα Βιβλιογραφικές Βάσεις Δεδομένων Γενικές Μηχανές
athanasiadis@rhodes.aegean.gr , -.
παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated
OLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.
c 1. SNS Social Networking Service [3,5,12] 3 1 CM 190 8562 10 3 E-mail: eiji.motohashi@gmail.com 141 6009 2 1 1 190 8562 10 3 12.5.3 12.7.24 Yahoo 2 1 2 3 1 1 2 574 32 Copyright c by ORSJ. Unauthorized
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling
5 7 008 7 Statistical Research Vol. 5, No7 Jul. 008 :,,, : ; ; ; :O :A :00 4565 (008) 07 0070 04 The Research on Sapling Estiation of Seasonal Index Based on Stratified Rando Sapling Deng Ming Abstract
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
DOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Supporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ. SFC / Univ. of Tokyo e-mail address: jpnjak@jpn.sas.
( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ SFC / Univ of Tokyo e-mail address: jpnjak@jpnsascom Dunnett SAS Multiple Comparisons, Repeated Measures, Quadrature
ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL
ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
ΔΙΟΡΘΩΣΗ ΣΤΟΙΧΕΙΩΝ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ Η/Ε ΣΤΟΝ ΟΙΚΙΑΚΟ ΤΟΜΕΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ*
«ΣΠΟΥΔΑΙ», Τόμος 42, Τεύχος 1ο, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 42, No 1, University of Piraeus ΔΙΟΡΘΩΣΗ ΣΤΟΙΧΕΙΩΝ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ Η/Ε ΣΤΟΝ ΟΙΚΙΑΚΟ ΤΟΜΕΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ* Του Δικαίου Ε.
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή
0 0 0 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση Οι διαφάνειες στηρίζονται στο P.-N. Tan,
Mantel & Haenzel (1959) Mantel-Haenszel
Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions
An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With
Βιογραφικό Σημείωμα. Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009
Βιογραφικό Σημείωμα Ονοματεπώνυμο: Φώτιος Σ. Μηλιένος Email: milienos@yahoo.com 1 Σπουδές Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009 Μεταπτυχιακό Δίπλωμα
:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)
: 3 ( 100820 :,,,,,,,;,,,,,, :,,,,,, (Barro,1990, (Barro and Sala2I2Martin,1992,(Arrow and Kurz,1970,,, ( Glomm and Ravikumar,1994,,,, (Solow,1957 3, 10 2004 3,,,,,,,,,,,, :,,, ( Inada,1963,,,,,;, ;, ;,,,,,(Ramsey,1928,,,,
«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa