Maximum power dynamic acoustic source direction-of-arrival tracking algorithm based on acoustic vector sensor

Σχετικά έγγραφα
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ER-Tree (Extended R*-Tree)

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

Motion analysis and simulation of a stratospheric airship

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Quick algorithm f or computing core attribute

A method of seeking eigen-rays in shallow water with an irregular seabed

Buried Markov Model Pairwise

Research on real-time inverse kinematics algorithms for 6R robots

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Area Location and Recognition of Video Text Based on Depth Learning Method

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

High order interpolation function for surface contact problem

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Adaptive grouping difference variation wolf pack algorithm

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

PACS: Pj, Gg

CorV CVAC. CorV TU317. 1

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering . MUSIC MUSIC TN (2010)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

CAP A CAP

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Fragility analysis for control systems

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Homomorphism in Intuitionistic Fuzzy Automata

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Merging Particle Filter

Detection and Recognition of Traffic Signal Using Machine Learning

:,,, PACS: a. , (3D-Var) (4D-Var) [7 9].,. 4D-Var 3D-Var,.,4D-Var,., ,.,, ;,,,,. ( ), . (PF). PF EnKF,,,

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

,,, (, ) , ;,,, ; -

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

A new practical method for closed-loop identification with PI control

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Control Theory & Applications PID (, )

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Supplementary Information

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Resilient static output feedback robust H control for controlled positive systems

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

A High-speed Scheduling Method of Virtual Machine Placement with Search Parameter Estimation by Collaborative Filtering

Spherical and Flat Surface Motion Sensing using Laser Mouse Sensors

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Trajectory tracking of quadrotor based on disturbance rejection control

Approximation Expressions for the Temperature Integral

SQC and Digital Engineering Technological Trends in Design Parameter Optimization and Current Issues

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

Eulerian Simulation of Large Deformations

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ΑΣΗΜΑΚΗΣ Κ. ΛΕΡΟΣ. Μόνιµος Επίκουρος Καθηγητής Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Durbin-Levinson recursive method

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems

Reading Order Detection for Text Layout Excluded by Image

A ne w method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies : cosine transform

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

EE512: Error Control Coding

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Fundamentals of Array Antennas

Heterogeneous Wireless Sensor Networks for Continuously Tracking Mobile Targets

w o = R 1 p. (1) R = p =. = 1

Applying Markov Decision Processes to Role-playing Game

A research on the influence of dummy activity on float in an AOA network and its amendments


Transcript:

31 2 2014 2 DOI: 10.7641/CTA.2014.30357 Control Theory & Applications Vol. 31 No. 2 Feb. 2014,, (, 475004) :, (DOA).,, DOA.,, Kalman.. : ; ; ; : TP391 : A Maximum power dynamic acoustic source direction-of-arrival tracing algorithm based on acoustic vector sensor HU Zhen-tao, LI Song, JIN Yong (Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng Henan 475004, China) Abstract: To effectively locate and trac the target in spatially non-uniform noise, we propose the maximum power dynamic acoustic source direction-of-arrival (DOA) algorithm based on the acoustic vector sensor. In this algorithm, according to the estimated noise covariance, the measurement of acoustic vector sensor is pre-whitened and the weight parameter is determined. Thus, a maximum power algorithm based on fixed weight parameter (WPF--MP) is formed. The accuracy of DOA estimation is improved when the power ratio of the sound pressure to the noise power in the velocity domain is unnown. Moreover, the output of the maximum power DOA estimator is employed to build the measurement equation of the dynamic source in the system of polar coordinates; and the cubature Kalman filtering algorithm is introduced to realize the state-tracing of the dynamic sound source. Theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. Key words: direction of arrival estimation; target tracing; acoustic vector sensor; dynamic acoustic source 1 (Introduction) (direction of arrival, DOA),.,.,., ( ), ( ) ( ). DOA., DOA. Nehorai DOA (CRLB) [1], Hawes [2], DOA., DOA [3]., [4], : 2013 04 18; : 2013 10 18.. E-mail: hzt@henu.edu.cn. : (61300214, U1204611); (13IRTSTHN021); (132300410148); (13A413066, 2008A510001); (HDXJJG2013-07).

210 31.,, (MUSIC) [5] (ESPRIT) [6]., Suresh, MUSIC DOA [7],., DOA (MUSIC ESPRIT ),., Levin, DOA [8],, DOA, CRLB., DOA., DOA,,,,,.,, [9 10].,. Zhong Capon, 2-D [11],., [8],,, DOA ;, Kalman,. 2 (Observation modeling of acoustic vector sensor) 3 1,. f S, u : u x cos θ cos ϕ u = u y = cos θ sin ϕ. (1) sin θ u z θ [ π/2, π/2] ϕ ( π, π]. p, v = (v x, v y, vz ) T, v = p u /(ρ 0 c), (2) : ρ 0, c.,, DOA. N, S R 1 N, ε R 4 N ε p εv = [ε vx ε vy εvz ] T, Y R 4 N Y v, : = ap S + ε p, (3) Y v = a v S + ε v. (4) [ ] a R 4 1, a = =e (j2πfτ ) a v [ ] 1, τ S. u /ρ 0 c S ε p, εv, σ 2 s,, σ2 p, σ2 v,. 3 DOA (Maximum power dynamic acoustic source DOA tracing algorithm based on acoustic vector sensor) 3.1 DOA (Maximum power DOA estimation algorithm based on weight parameter fixed), q T q = 1, û = arg max{ 1 N [α p q N,n + αv q T Y,n] v 2 }, (5) n=1 : α p,n, αq v T Y,n v. N Θ = Θ vp [ Θ pp Θpv Θ vp Θvv ] = 1 N N n=1 a p [ ] [ ] T,n,n. (6) Y,n v Y,n v = (Θpv )T ; Θ pp Θvv. (maximum power, MP) [8], (5) T (q ) = 1 N N [α p,n + αv q T Y,n] v 2 q n=1

2 : 211, q T (q ) = α p Θvp + (1 αp )Θvv q. (7) α p MP, [8], α p, αv, α p + α v = 1. α p = σ2 v,/(σp, 2 + σv,), 2 α p /αv, DOA CRLB.,, MP, DOA.,, 1, 0.5., (WPF--MP). : N, S ε p εv, (3) (4) (6), : Θ = a σ 2 s,a T + ˆQ, (8) : ˆQ N, N, ˆQ [ ] σp, 2 0 1 3. 0 3 1 σv,i 2 3 3 [12], ˆQ, [ ] ] Ŷ,n = ˆQ 1 p 2,n [Ŷ,n =, n = 1,, N. (9) Y,n v Ŷ,n v, [ ] ˆΘ ˆΘpp ˆΘ pv = = 1 p N [Ŷ,n N n=1 Ŷ,n v ˆΘ vp ˆΘ vv ] [Ŷ p,n Ŷ v,n ] T. (10), (8) (9), ˆΘ = ˆQ 1 2 (a σs,a 2 T + ˆQ )( ˆQ 1 2 )T.,,., (7) α p = σ2 v, /(σ2 p, + σv,) ˆα 2 = 0.5, MP, [8], q t ( q t+1 q ε), t, DOA CRLB. WPF--MP : 1) : t = 0, t, L, µ, ε. 2) ˆQ. 3) (9) Ŷ,n, n = 1, 2,, N. 4) (10) q 0 = û 0 vp = ˆΘ / ˆΘ vp. 5) for t 1 to L q t+1 if q t+1 end = q t + µ[ˆα 6) : û = q t. ˆΘ vp q t < ε, brea vv + ˆα ˆΘ vp vv ˆΘ ˆΘ, q t ], ˆα = 0.5 3.2 WPF MP DOA (Dynamic acoustic source DOA tracing algorithm based on WPF--MP) DOA,,,.,, DOA,. DOA,, (cubature Kalman filter, CKF) DOA,. X = Φ 1 X 1 + Γ 1 W 1, (11) : X = (x, ẋ, y, ẏ, z, ż ) T, x, y z X, Y, Z, ẋ, ẏ ż ; Φ 1, Γ 1, W 1. WPF--MP û = (û x, û y, û z ) T CKF, û : V Z = (ˆθ, ˆϕ ) T, (12) R = E{[Z h(x )][Z h(x )] T }, (13) h(x )., X, (13) R. ε p, εv σ2 p,, σ2 v,, WPF--MP DOA, Monte Carlo, DOA, Z R = [ N (Z l N Z m/n)/n] l=1 m=1 [ N (Z l N Z m/n)/n]t. (14) l=1 m=1

212 31, (WPF--MPT), DOA [13],. WPF--MPT, WPF--MPT : 1). 1 P 1 1, P 1 1 = S 1 1 (S 1 1 ) T. (15) X i, 1 1 = S 1 1 ξ i + x 1 1, (16) : ξ i = m/2[ ] i, i = 1, 2,, m, [ ] i R n 1 [I n n I n n ] R n m i, I n n n, m = 2n. X i, 1 = Φ 1X i, 1 1. (17) : ˆx 1 = 1 m X i, 1 m, (18) P 1 = 1 m m 2). X i, 1 X T i, 1 ˆx 1 ˆx T 1 + Γ 1 Q 1 Γ T 1. (19) WPF--MP û. û ˆθ ˆϕ, Z = ( ˆθ, ˆϕ ) T. P 1 : P 1 = S 1 (S 1 ) T. (20) X i, 1 = S 1 ξ i + x 1. (21) : Z i, 1 = h(x i, 1 ). (22) ẑ 1 = 1 m m Z i, 1. (23) : P zz, 1 = 1 m Z m i, 1 Z T i, 1 ẑ 1 ẑ T 1 + R, (24) P xz, 1 = 1 m X m i, 1 Z T i, 1 : ˆx 1 ẑ T 1. (25) K = P xz, 1 P 1 zz, 1. (26) : ˆx = ˆx 1 + K (Z ẑ 1 ), (27) P = P 1 K P zz, 1 K T. (28) ˆx,. 4 (Simulation results and analysis) 4.1 WPF--MP DOA (DOA estimation based on WPF--MP) (MSAE) [1] DOA, N 8000, MP WPF--MP DOA, θ =30, ϕ = 30, σ 2 s, = 10, σ 2 p, = 1.5, σ 2 v, = 0.5. WPF--MP µ ε DOA. [8] MP, q t 20.,, WPF--MP MP, L = 50, µ = 1, ε = 0.00001.,, MP, α p 0 1 100 DOA, 0.01; WPF--MP ˆα = 0.5 DOA. MC = 10000,, MP WPF-- MP MSAE CRLB, MP DOA, 1. 1 MP WPF--MP Fig. 1 The comparision of estimation precision for MP and WPF--MP

2 : 213 1,, WPF--MP DOA MSAE MP α p MSAE, CRLB. MP α p, MP DOA. WPF-- MP,, Capon [14] DOA, 10000 (RMSE) MP WPF--MP. Capon DOA, 0.1, 0 60., MP α p = σ2 v,/ (σp, 2 + σv,), 2, MP α p 0 1. 3 1. 1 3 RMSE Table 1 The comparision of RMSE and time-consuming for three algorithms RMSE/( ) RMSE/( ) /( ) MP 0.0049 0.0057 0.0146 Capon 0.0047 0.0055 12.4709 WPF--MP 0.0047 0.0054 0.0644, T = 1 s. CKF Z R (14). = 120 DOA, 2 3 WPF--MPT WPF--MP DOA RMSE. 2 RMSE Fig. 2 The comparision of RMSE for elevation 1,, MP WPF--MP DOA Capon. MP, α p DOA ; WPF--MP DOA, RMSE, WPF--MP Capon MP. 1 1, WPF--MP,. 4.2 WPF--MPT DOA (Dynamic acoustic source DOA tracing based on WPF--MPT) WPF--MP, DOA., d = 1000 m, θ 0 = 30 ϕ 0 = 30, X, Y, Z 20 m/s, 10 m/s, 20 m/s, σ 2 s, = 10, σ 2 p, = 1.5, σ 2 v, = 0.5, (11), WPF--MP DOA, Z =(ˆθ, ˆϕ ) T. Q 1 =diag{10 2, 10 2, 10 2 } 3 RMSE Fig. 3 The comparision of RMSE for azimuth 2 3, WPF--MPT DOA RMSE WPF--MP. CKF,, RMSE. 4.1 WPF--MP, 2 3, WPF--MPT.,, 2 3 100 WPF--MP WPF--MPT 21 120 DOA RMSE. 2 WPF--MP RMSE Table 2 The mean of RMSE for WPF--MP under different signal-to-noise ratio σ 2 s, σ 2 p, σ 2 v, /( ) /( ) 10 1.5 0.5 0.0046 0.0051 10 1 1 0.0067 0.0074 10 1.5 0.5 0.0025 0.0027 1 1.5 0.5 0.0092 0.0100

214 31 3 WPF--MPT RMSE Table 3 The mean of RMSE for WPF--MPT under different signal-to-noise ratio σ 2 s, σ 2 p, σ 2 v, /( ) /( ) 10 1.5 0.5 0.0029 0.0032 10 1 1 0.0040 0.0043 10 1.5 0.5 0.0017 0.0018 1 1.5 0.5 0.0052 0.0057, WPF--MPT, DOA WPF--MP.,, 4 σ 2 s, = 10, σ 2 p, = 1.5, σ 2 v, = 0.5 WPF--MPT MSAE MSAE CRLB,,, WPF--MPT DOA MSAE CRLB, WPF--MPT. 4 WPF--MPT MSAE CRLB Fig. 4 The comparision of CRLB for WPF--MPF and static MSAE 5 (Conclusions), DOA., DOA, DOA, Kalman DOA,. DOA, WPF--MPT :, DOA (MUSIC ESPRIT ), WPF--MPT, DOA,, ;, Kalman,, DOA, DOA, ;, DOA,. (References): [1] NEHORAI A, PALDI E. Acoustic vector sensor array processing [J]. IEEE Transations on Signal Processing, 1994, 42(9): 2481 2491. [2] HAWKES M, NEHORAI A. Effects of sensor placement on acoustic vector sensor array performance [J]. IEEE Journal of Oceanic Engineering, 1999, 24(1): 33 40. [3],,,. DOA [J]., 2010, 38(10): 2377 2382. (GU Chen, HE Jin, ZHU Xiaohua, et al. Extended-aperture twodimensional DOA estimation with acoustic vector sensor array using the propagator method [J]. Acta Electronica Sinica, 2010, 38(10): 2377 2382.) [4],. [J]., 2005, 30(1): 76 82. (CHEN Huawei, ZHAO Junwei. Coherent signal subspace wideband optimal beamforming for acoustic vector-sensor array [J]. Acta Electronica Sinica, 2005, 30(1): 76 82.) [5] WONG K T, ZOLTOWSKI M D. Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace [J]. IEEE Journal of Oceanic Engineering, 2000, 25(2): 262 273. [6] CHEN H, ZHAO J. Coherent signal-subspace processing of acoustic vector sensor array for doa estimation of wideband sources [J]. Signal Process, 2005, 85(4): 837 847. [7] SURESH K N, DIBU J P, BHATTACHARYA C. DOA estimation using compressive beamforming in shallow ocean using acoustic vector sensors [C] //Annual IEEE India Conference. India: IEEE, 2012: 551 554. [8] LEVIN D, GANNOT S, HABET S. Direction-of-arrival estimation using acoustic vector sensors in the presence of noise [C] //IEEE International Conference Acoustics, Speech and Signal Processing. Prague: IEEE, 2011: 105 108. [9],,,. MIMO DOA [J]., 2012, 30(3): 505 511. (LIU Nan, ZHANG Juan, ZHANG Linrang, et al. A low complexity 2-D estimation method for MIMO rader [J]. Acta Electronica Sinica, 2012, 30(3): 505 511.) [10] HU D X, ZHAO Y J, LI D H.Joint source number detection and DOA trac using particle filter [C] //International Conference on Measuring Technology and Mechatronics Automation. Changsha: IEEE, 2010: 13 14. [11] ZHONG X H, PREMKUMAR A B, MADHUKUMAR A S. Particle filtering and posterior cramer-rao bound for 2-D direction of arrival tracing using an acoustic vector sensor [J]. IEEE Sensor Journal, 2012, 12(2): 363 377. [12] WU Y T, HOU C H. Direction-of-arrival estimation in the presence of unnown non-uniform noise fields [J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 504 510. [13] ARASARATNAM I, HAYKIN S. Cubature Kalman filters [J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254 1269. [14] HAWKES M, NEHORAI A. Acoustic vector-sensor beamforming and Capon direction estimation [J]. IEEE Transactions on Automatic Control, 1998, 46(9): 2291 2304. : (1979 ),,,,, E-mail: hzt@henu.edu.cn; (1988 ),,,, E-mail: lisonghenu@163.com; (1972 ),,,,, E-mail: jy@henu.edu.cn.