JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering . MUSIC MUSIC TN (2010)
|
|
- Δημήτηρ Παπάζογλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 28 No. 3 May DOI:.3969/j.issn MUSIC 2. MUSIC Taylor MUSIC MUSIC Taylor TN () Success Probability of Direction-Finding of MUSIC Algorithm with Modeling Errors WANG Ding, WU Ying Institute of Information Engineering, PLA Information Engineering University, Zhengzhou 2, China Abstract: The direction-finding (DF) success probability is an important specification of the eigen-structure algorithm. We derive the DF success probability of the MUSIC algorithm in the presence of modeling errors. A closed-form expression of DF error and its statistical properties are obtained from the first-order Taylor expansion of the spatial spectrum function. Two classes of DF success definitions are given for single-source DF and holistic DF based on these definitions and statistical characteristics of the modeling errors. The calculation formulas of the DF success probability are derived. The theoretical analysis is validated through simulation using a uniform circular array (UCA) and a uniform linear array (ULA). Keywords: direction-finding, modeling errors, MUSIC algorithm, direction-finding success probability, Taylor expansion, quadratic form of Gaussian vector MUSIC [] MUSIC [2-5] [2] MUSIC [3] MUSIC Taylor [4-5] MUSIC MUSIC (No.BSLWCX) wang_ding84@yahoo.com.cn DSP hnwuying22@63.com
2 2 28 [6-7] MUSIC () [6] Taylor [7] MUSIC [8-] MUSIC. [8-9] [] [] MUSIC. MUSIC Taylor MUSIC ) ( )ẋ(θ) ẍ(θ) ( )x(θ) θ 2) [ ] Moore-Penrose 3) I n n i e (n) i ; 4) O n m n m O n n n n 5) δ kl delta k = l, δ kl =, δ kl = MUSIC M D(D < M) k θ k, X(t) = Âs(t) + n(t) () s(t) n(t) ÂÂ = A + Ã, A = [a(θ ) a(θ 2 ) a(θ D )] a(θ k ) Ã = [ã(θ ) ã(θ 2 ) ã(θ D )] ã(θ k ) [ ] E ã(θ k )ã H (θ l ) = δ kl σai 2 M [ ] (2) E ã(θ k )ã T (θ l ) = O M [2,7,-] () ] R = E[ X(t) XH (t) = ÂP ÂH + σni 2 M (3) P = E[s(t)s H (t)] σ 2 n R [] λ λ 2 λ D > λ D+ = λ D+2 = = λ M = σ 2 n (4) û, û 2,, û M, [] span{û, û 2,, û D } = range{â} (5) span{û D+, û D+2,, û M } range{â} 2 ÛN = [û D+ û D+2 û M ], P N = ÛNÛ H N = I M ÂÂ = P A (6) MUSIC D(θ) = a H (θ) P N a(θ) = a H (θ) P A a(θ) (7) (7) P N ( P A ) MUSIC MUSIC 2 MUSIC MUSIC J(θ, Ã) = 2 D(θ) θ = Re{ȧ H (θ) P A a(θ)} (8)
3 3 MUSIC 29 θ k θ k J( θ k, Ã) = J(θ k, O M D ) = (9) J( θ k, Ã) J(θ k, O M D ) + J(θ, O M D) ( θ k θ k ) + θ θ=θk M m= n= θ k θ k à Taylor M m= n= J(θ k, Ã) Ã=OM D ã (r) + J(θ k, Ã) Ã=OM D ã (i) () ã à m n ã(r) ã (i) (9) () θ k = θ k θ k = M m= n= J(θ k, Ã) Ã=OM D ã (r) + M J(θ, O M D ) θ m= n= J(θ k, Ã) Ã=OM D ã (i) () θ=θk (2) P A η = P A  ( η  P  ) H A η   = e m (M) e (D)T n, { Re { Re J(θ k, Ã) ȧ H (θ k ) P A  = ie (M) m e (D)T n Ã=OM D = } Ã=OM D a(θ k ) = (2) Re{f H (θ k )e (M) m δ nk } (3) J(θ k, Ã) ȧ H (θ k ) P A Ã=OM D = } Ã=OM D a(θ k ) Im{f H (θ k )e (M) m δ nk } (4) f(θ k ) = PA ȧ(θ k). (3) (4) A a(θ k ) = e (D) k PA a(θ k) = M, J(θ, O M D ) = ȧ H (θ k )PA θ ȧ(θ k) = h(θ k ) θ=θk (5) (3) (5) () θ k = θ k θ k = f (r)t (θ k )ã (r) (θ k ) + f (i)t (θ k )ã (i) (θ k ) h(θ k ) = (6) f (r) (θ k ) f (i) (θ k ) f(θ k ) ã (r) (θ k ) ã (i) (θ k ) ã(θ k ) MUSIC. θ k ã (r) (θ k ) ã (i) (θ k ) ã (r) (θ k ) ã (i) (θ k ) θ k E[ θ k ] = var[ θ k ] = σa f(θ 2 k ) 2 2h 2 (θ k )/2 = σah 2 (θ k )/2, k =, 2,, D (7) (7)h(θ k ) = f(θ k ) 2 2 (6) k l E[ θ k θ l ] = θ k θ l 3 MUSIC 3. MUSIC k θ k θ,. θ. 2 θ k
4 k Pr{ θ k θ} = Φ( θ/ var[ θ k ]) Φ( θ/ var[ θ k ]) = 2Φ( θ/ var[ θ k ]) (8) Φ(u) = 2π u e x2 /2 dx, [2] 3.2 (8).. 2 max { θ k } θ, k D 2 k l θ k θ l Pr{ max k D { θ k } θ} = Pr{ θ k θ} = [2Φ( θ/ var[ θ k ] ) ] (9) (8) (9) D ( θ k ) 2 θ, 2. 2 θ = [ θ θ 2 θ D ] T, 2 Pr{ θ 2 2 D( θ) 2 }, 2 θ 2 2 (6) θ = F T F T 2... F T D ã ã 2 = F ã (). ã D F k = [f (r)t (θ k )/h(θ k ) f (i)t (θ k )/h(θ k )] T ã k = [ã (r)t (θ k ) ã (i)t (θ k )] T. θ 2 2 = ã T F T F ã = ã T Gã (2) G = F T F. (2) (2) ã σai 2 2MD /2 (2) θ 2 2 θ 2 2 [3-4] 2 π Pr{ θ 2 2 c} = + t Im{e itc ϕ θ 2 2 (t)}dt (22) ϕ θ 2 2 (t) θ 2 2 ϕ θ 2 2 (t), θ 2 2 G D, G G = λ k g k gk T (23) λ k G g k (23) (2) θ 2 2 = ã T Gã = 2 σaλ 2 k (gk T ã) 2 d = λ k χ 2 k() (24) λ k = σaλ 2 k /2, ã = 2ã/σ a χ 2 k () = d k l χ 2 k () χ2 l () E[gk T ãã T g l ] = gk T, k = l g l = δ kl = (25), k l χ 2 k () ϕ χ 2 k ()(t) = ( 2it) /2 [5] θ 2 2 ϕ θ 2 2 (t) = ( 2iλ k t) /2 = ( + 4λ 2 kt 2 ) /4 exp{i arctan(2λ k t)/2} (26)
5 3 MUSIC 293 (26) (22) Pr{ θ 2 2 c}= 2 π + { t (+4λ 2 kt 2 ) /4 sin{ arctan(2λ k t)/2 tc}}dt = 2 π + t sin{α(t)} dt (27) β(t) α(t) = D arctan(2λ k t)/2 tc, β(t) = D (+ 4λ 2 k t2 ) /4 (27) t t + lim t sin{α(t)} cos{α(t)} α(t) = lim t β(t) t β(t) + t β(t) = λ k c (28) t + 2 () F ; 2 G = F T F ; 3 G D λ k, k =, 2,, D; 4 λ k = σaλ 2 k /2, k =, 2,, D; 5 (27) ) (3) 2) 5 Monte Carlo 3) 2 Lobatto [6] db θ =. r/λ =.5, σ a =.3, θ =.3 ( ) 2 2 θ 2 =, σ a =.3, θ = θ 2 =, r/λ =.5, θ = θ 2 =, r/λ =.5, σ a = /( ) Figure Direction-finding success probability versus the azimuth separation of the two sources Figure 2 Direction-finding success probability versus the ratio of radius and wavelength
6 Figure 3 Direction-finding success probability versus the standard deviation of the modeling errors /( ) 4 Figure 4 Direction-finding success probability versus the angle error tolerance /( ) 5 Figure 5 Direction-finding success probability versus the azimuth separation of the two sources Figure 6 Direction-finding success probability versus the ratio of element spacing and wavelength db () θ =. 5.5 σ a =.3, θ = θ 2 =, σ a =.3, θ =.3 (.5) 7 2 θ 2 =,.5 θ = θ 2 =,.5 σ a = Figure 7 Direction-finding success probability versus the standard deviation of the modeling errors 8 ). 2) 2
7 3 MUSIC ) 2. 4). 5). 6). 7) /( ) 8 Figure 8 Direction-finding success probability 5 versus the angle error tolerance MUSIC Taylor MUSIC.. : [] Schmidt R O. Multiple emitter location and signal parameter estimation[j]. IEEE Transactions on Antennas and Propagation, 986, 34(3): [2] Swindlehurst A, Kailath T. A performance analysis of subspace-based methods in the presence of model error part I the MUSIC algorithm[j]. IEEE Transactions on Signal Processing, 992, (7): [3] Friedlander B. A sensitivity analysis of the MU- SIC algorithm[j]. IEEE Transactions on Acoustics, Speech and Signal Processing, 9, 38(): [4]. MUSIC [J]. 5, 27(): Dong Xiaohui, Ke Hengyu, Dong Zhifei. An analysis of FO-MUSIC algorithm in the presence of sensor perturbations[j]. Modern Radar, 5, 27(): (in Chinese) [5]. MUSIC [J]. 8, 36(2): 5-7. Liu Jian, Yu Hongqi, Huang Zhitao, Zhou Yiyu. Performance analysis of the MUSIC algorithm for noncircular signals with modeling errors[j]. Acta Electronica Sinica, 8, 36(2): 5-7. (in Chinese) [6] Hamza R, Buckley K. An analysis of weighted eigenspace methods in the presence of sensor errors[j]. IEEE Transactions on Signal Processing, 995, 43(5): -. [7] Ferr ol A, Larzabal P, Viberg M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[J]. IEEE Transactions on Signal Processing, 6, 54(3): 7-9. [8]. MUSIC[J]., 28(6): 5-7. Su Weimin, Gu Hong, Ni Jinlin, Liu Guosui, Zhang Guangyi. A statistical performance analysis of the MUSIC algorithm in the presence of amplitude and phase perturbation[j]. Acta Electronica Sinica,, 28(6): 5-7. (in Chinese) [9]. [J]., (5): Su Weimin, Gu Hong, Ni Jinlin, Liu Guosui. An analysis of the effects of multi-channel amplitude and phase errors on the spatial spectrum and resolving performance[j]. Progress in Natural Science,, (5): (in Chinese) [] Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC al-
8 gorithm[j]. IEEE Transactions on Signal Processing, 994, 42(6): [] Ferr ol A, Larzabal P, Viberg M. On the resolution probability of MUSIC in presence of modeling errors[j]. IEEE Transactions on Signal Processing, 8, 56(5): [2]. [M]. 2: Sheng Zhou, Xie Shiqian, Pan Chengyi. Probability theory and mathematical statistics[m]. Beijing: Higher Education Press, 2: (in Chinese) [3] Imhof J P. Computing the distribution of quadratic forms in normal variables[j]. Biometrika, 96, 48(2): [4] Dugina T N, Martynov G V. Computing the distribution function of the ratio of quadratic forms in normal variables[j]. Journal of Mathematical Sciences, 99, 53(6): [5]. [M]. :, 6: Zhang Runchu. Multivariate statistical analysis[m]. Beijing: Science Press, 6: (in Chinese) [6]. MATLAB[M]. :, 6: Zhang Zhiyong. Proficient in MATLAB[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 6: (in Chinese) ( : )
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)
30 01 3 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. Mar. 01 DOI: 10.3969/j.issn.055-897.01.0.007 DOA 1, 1 1. 150001. 15007 DOA DOA. Cyclic MUSIC.. DOA TN911.7 055-89701)0-0146-05
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Maximum power dynamic acoustic source direction-of-arrival tracking algorithm based on acoustic vector sensor
31 2 2014 2 DOI: 10.7641/CTA.2014.30357 Control Theory & Applications Vol. 31 No. 2 Feb. 2014,, (, 475004) :, (DOA).,, DOA.,, Kalman.. : ; ; ; : TP391 : A Maximum power dynamic acoustic source direction-of-arrival
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN
CDF(BIVNORM or CHISQ or DICKEYF or F or NORMAL or T or WTDCHI, DF=CHISQ T, DF1=F, DF2=F, NLAGS= Dickey-Fuller, NOB=, NVAR=, RHO=BIVNORM, EIGVAL=WTDCHI, LOWTAIL or UPTAIL or TWOTAIL, CONSTANT, TREND, TSQ,
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March
40 3 Journal of South China University of Technology Vol 40 No 3 2012 3 Natural Science Edition March 2012 1000-565X 2012 03-0106-06 * 510640 MFCC K-L K-L MFCC K-L 46 61% 42 25% 39 68% 36 36% K-L TN912
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
CAP A CAP
2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith
ADT
2015 12 41 12 December 2015 Journal of Beijing University of Aeronautics and Astronautics Vol 41 No 12 http bhxb buaa edu cn jbuaa@ buaa edu cn DOI 10 13700 /j bh 1001-5965 2014 0790 1 2 * 1 2 1 1 100191
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy
37 6 2004 6 Journal of Tianjin University Vol. 37 No. 6 Jun. 2004 Ξ 1,2, 1,2, 3 (1., 300072 ; 2. 2, 300072 ; 3., 300072) :,,,.,,(RMSEP) 53 %58 %.. : ; ; : O657. 33 : A : 04932 2137 (2004) 062 05352 05
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
DOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems
29 8 32 4 Journal of Beijing University of Posts and Telecommunications Aug. 29 Vol. 32 No. 4 :1725321 (29) 427724 CFR 1,2, 3, 3, 1 (1., 1876 ; 2., 413 ; 3., 3615) :.,,.,,.. : ; ; ; : TN911. 72 : A Blind
14.5mm 14.5mm
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 1.119/JETCAS.218.289582,
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
A method of seeking eigen-rays in shallow water with an irregular seabed
32 2 Vol 32 2 20 2 Journal of Harbin Engineering University Dec 20 doi 0 3969 /j issn 006-7043 20 2 004 5000 2 TB566 A 006-7043 20 2-544-05 A method of seeking eigen-rays in shallow water with an irregular
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
A ne w method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies : cosine transform
49 1 006 1 CHINESE JOURNAL OF EOPHYSICS Vol. 49, No. 1 Jan., 006,,..,006,49 (1) :4448 Zhang F X, Meng L S, Zhang F Q, et al. A new method for spectral analysis of the potential field and conversion of
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS
4 4 Vol.4 No.4 005 Chinese Journal of Rock Mechanics and Engineering Feb. 005 1 1 1 (1. 03004. 1008) ( ) D S N S D N D = D S 1 D N ST SP N N S N = kn S k TU 45 A 1000 6915(005)04 0601 09 STUDY ON 3D FRACTA
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u
.6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
,,, (, 100875) 1989 12 25 1990 2 23, - 2-4 ;,,, ; -
25 3 2003 5 RESOURCES SCIENCE Vol. 25 No. 3 May 2003 ( 100875) : 500L - 2-4 - 6-8 - 10 114h - 120h 6h 1989 12 25 1990 2 23-2 - 4 : ; ; - 4 1186cm d - 1 10cm 514d ; : 714 13 317 714 119 317 : ; ; ; :P731
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Inhomogeneous spatial point pattern analysis of moso bamboo Phyllostachys edulis
2010 30 16 4401 4407 Acta Ecologica Sinica 1 2 3 * 4 3 3 1. 100101 2. 422200 3. 330045 4. 100091 K Monte-Carlo Inhomogeneous spatial point pattern analysis of moso bamboo Phyllostachys edulis SHI Peijian
Fundamentals of Array Antennas
Fundamentals of Array Antennas Nobuyoshi Kikuma 466-8555 Dept. of Computer Science and Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan Abstract Array antenna technologies
FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300
Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.
Supporting Information [NH 3 CH 3 ] [In SbS 9 SH]: A novel methylamine-directed indium thioantimonate with Rb + ion-exchange property Kai-Yao Wang a,b, Mei-Ling Feng a, Jian-Rong Li a and Xiao-Ying Huang
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Gain self-tuning of PI controller and parameter optimum for PMSM drives
14 1 1 1 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 1 Dec. 1 1 1 1 1 1. 151. 154 PI PI E E 1% 4r /min TM 359 A 17-449X 1 1-9- 6 Gain self-tuning of PI controller and parameter optimum for PMSM drives YANG
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA
Supporting Information Pb 3 B 6 O 11 F 2 : A First Noncentrocentric Lead Fluoroborate with Large Second Harmonic Generation Response Hongyi Li, a Hongping Wu, a * Xin Su, a Hongwei Yu, a,b Shilie Pan,
(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
«ΣΠΟΥΔΑΙ», Τόμος 41, Τεύχος 2ο, Πανεπιστήμιο Πειραιώς «SPOUDAI», Vol. 41, No 2, University of Piraeus MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Του Πάνου Αναστ. Πανόπουλου Οικονομικό
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Memory Systems Architecture and Performance Analysis Multi-bit Error Correction I Spring 2005 ENEE 759H Lecture12.fm Bruce Jacob David Wang University of Maryland ECE Dept. SLIDE 14 C α 2 C α = C 1 C 0
Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων
Vol. 30 No Journal of Jilin University Information Science Edition Sept. 2012
30 5 Vol. 30 No. 5 2012 9 Journal of Jilin University Information Science Edition Sept. 2012 1671-5896 2012 05-0462-08 1 2 3 1 1. 650091 2. 351254 3. 363105 TN914. 5 A Implementation and Application of
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Application of a novel immune network learn ing algorithm to fault diagnosis
3 5 Vol. 3. 5 2008 10 CAA I Transactions on Intelligent System s Oct. 2008 1, 2, 1, 2 (1., 525000; 2., 030024) :,.,.,.,., 5. : ; ; ; : TP18 : A : 167324785 (2008) 0520449206 Application of a novel immune
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later