Fundamentals of Array Antennas
|
|
- Διδώ Δυοβουνιώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Fundamentals of Array Antennas Nobuyoshi Kikuma Dept. of Computer Science and Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya, , Japan Abstract Array antenna technologies have contributed to development and progress of recent wireless systems. This lecture summarizes fundamentals of those array antenna technologies and also explains the mechanism and basic performances of array antennas. In addition, relating technologies, such as adaptive array antennas and direction-of-arrival estimation methods, are presented. 1. [1] LAN MUSIC [2] [7] [2], [8], [9] K θ 1 E 0 g(θ) k ( E k = E 0 g(θ)exp j 2π ) λ d k sin θ (1) (k =1, 2,...,K) 1
2 λ d k k 1 E sum E sum = E 0 g(θ)d(θ) (2) K { D(θ) = A k exp j ( 2πλ )} d k sin θ + δ k (3) k=1 A k δ k k D(θ) (2) g(θ) D(θ) (pattern multiplication) 2π λ d k sin θ gm + δ k =2mπ (m = ±1, ±2,...) (5) θ gm grating lobe 2 (2) E sum θ 2 null } [db] [db] d k ( c ) sinθ = cτ k θ (a) 6 (b) 6 2: d K d k d 1 #K #k #1 A K A k A 1 K k 1 Σ 1: K θ 0 δ k δ k = 2π λ d k sin θ 0 (4) (3) A k Dolph-Chebyshev array [10]
3 3 K #1 #2 θ #K x 1 (t) x 2 (t) w 1 w 2 + x K (t) w K y(t) x(t) w y(t) 3: K x k (t) k w k k y(t) x(t) = Δ [x 1 (t),x 2 (t),...,x K (t)] T (6) w = Δ [w 1,w 2,...,w K ] T (7) y(t) y(t) =w H x(t) =x T (t)w (8) T H w k x k (t) 1 A k δ k wk = A k exp(jδ k ) (9) () (k, l) k l R xx Δ = E[x(t)x H (t)] (10) E[ ] P out = 1 2 E[ y(t) 2 ]= 1 2 wh R xx w (11) [1] SINR(Signal-to-Interference-plus-Noise Ratio) SINR = Δ + (12) db θ 0 x(t) =s(t)a(θ 0 )+n(t) (13) [ a(θ 0 )= g 1 (θ 0 )exp ( j 2πλ ) d 1 sin θ 0 ( g K (θ 0 )exp j 2π )] T λ d K sin θ 0 (14) s(t) a(θ 0 ) n(t) 3
4 g k (θ 0 ) k θ 0 g k (θ) =1(k =1, 2,...,K) y(t) SINR y(t) =s(t)w H a(θ 0 )+w H n(t) (15) SINR = E[ s(t)wh a(θ 0 ) 2 ] E[ w H n(t) 2 ] = E[ s(t) 2 ] w H a(θ 0 ) 2 w H E[n(t)n H (t)]w = P s w H a(θ 0 ) 2 P n w H w (16) (17) (18) P s = E[ s(t) 2 ] P n E[n(t)n H (t)] = P n I I SINR w H w = (18) w = a(θ 0 ) (19) (phased array) [10] adaptive beamforming adaptive null steering [1] 1) (Minimum Mean Square Error: MMSE) 2) SNR (Maximum Signal-to-Noise ratio: MSN) 3) (Directionally Constrained Minimization of Power: DCMP) 4) (Power Inversion: PI) 5) (Constant Modulus Algorithm: CMA) 1) 4) 3. 2 MMSE MMSE 1960 Widrow [11] Widrow LMS Compton [12], [13] LMS LMS MMSE MMSE LMS MMSE 4
5 e(t) r(t) y(t) e(t) =r(t) y(t) =r(t) w H x(t) (20) E [ e(t) 2] = E [ r(t) y(t) 2] (21) = E [ r(t) w H x(t) 2] (22) = E [ r(t) 2] w T rxr w H r xr + w H R xx w (23) r xr r xr = E[x(t)r (t)] (24) w (23) (23) w R xx w (23) w opt w opt = R 1 xx r xr (25) MMSE [14] MMSE [15] 3. 3 MSN SNR MSN 1950 Howells IF [1] Applebaum SNR Howells-Applebaum loop MSN [16] Howells-Applebaum(HA) MSN SNR x(t) s(t) u(t) n(t) x(t) =s(t)+u(t)+n(t) (26) y s (t) y u (t) y n (t) y s (t) =w H s(t) =s T (t)w (27) y u (t) =w H u(t) =u T (t)w (28) y n (t) =w H n(t) =n T (t)w (29) P Sout = 1 2 E [ y s (t) 2] = 1 2 wh R ss w (30) P Uout = 1 2 E [ y u (t) 2] = 1 2 wh R uu w (31) P Nout = 1 2 E [ y n (t) 2] = 1 2 P nw H w (32) R ss R uu P n s(t) s(t) =s(t)v s = s(t)a(θ s ) (33) s(t) θ s v s R ss R ss = E [ s(t)s H (t) ] = P s v s v H s (34) P s SNR SINR SNR = P Sout = wh R ss w P Uout + P Nout w H R nn w (35) 5
6 R nn R nn = R uu + P n I (36) SNR w (35) SNR SNR w (35) (34) R xx = P s v s v H s + R nn (37) w opt = R 1 xx v s (38) [1] MSN v s = a(θ s ) MSN 3. 4 DCMP Frost MMSE fidelity constraint CMP [17] Frost fidelity constraint ( w 1 + w w K =1 ) Frost prefilter (DCMP) [18] [19] 3 K DCMP : Directionally Constrained Minimization of Power N C T w = h (39) C =[c 1 c 2 c N ] (40) h =[h 1 h 2 h N ] T (41) c n (n =1,..., N) C h n (n =1,..., N) c n h h w H a(θ s )=h (42) y s (t) =w H {s(t)a(θ s )} = s(t)w H a(θ s )=hs(t) (43) c = a(θ s ) (39) DCMP DCMP ( min P out = 1 ) w 2 wh R xx w subject to C T w = h Lagrange [1] w opt = Rxx 1 C(C H Rxx 1 C) 1 h (44) N =1: c T w = h (44) w opt = γr 1 xx c, γ Δ = h c H R 1 xx c 3. 5 (45) PIAA : Power Inversion Adaptive Array (K 1) 6
7 [20] MMSE MSN DCMP PIAA PIAA PIAA CMPPIAA PIAA [1] 4. w opt = Rxx 1 t (46) t =[1, 0,, 0] T (47) 4. 1 LAN ( ) [4] Capon (LP:Linear Prediction) [2] MUSIC ESPRIT [4], [5] [2], [8], [9] Capon DCMP LP [9] K L s l (t) θ l (l =1, 2,...,L) a(θ l ) L x(t) = s l (t)a(θ l )+n(t) (48) l=1 = As(t)+n(t) (49) A =[a(θ 1 ), a(θ 2 ),, a(θ L )] (50) s(t) =[s 1 (t),s 2 (t),,s L (t)] T (51) A n(t) 0 ( ) σ 2 (= P n ) R xx R xx = E[x(t)x H (t)] = AE[s(t)s H (t)]a H + E[n(t)n H (t)] = ASA H + σ 2 I (52) S = Δ E[s(t)s H (t)] (53) (53) S S = diag{p 1,P 2,,P L } (54) Δ [ P l = E sl (t) 2] (l =1, 2,...,L) (55) P l 7
8 (beamformer) (uniform) () θ 2.2 ( ) w = a(θ) (56) θ θ a(θ) θ (mode vector) P out = 1 2 ah (θ)r xx a(θ) (57) ( ) P BF (θ) = P out a H (θ)a(θ)/2 = ah (θ)r xx a(θ) a H (θ)a(θ) (58) R xx a(θ) P BF (θ) θ P BF (θ) [1] Capon Capon (DCMP) (45) c = a(θ) h =1 P out = 1 2 wh CPR xx w CP (60) = 1 2a H (θ)r 1 xx a(θ) (61) Capon P CP (θ) =2P out = 1 a H (θ)r 1 xx a(θ) (62) R xx a(θ) P CP (θ) θ Capon (Linear Prediction) 2 K 1 ˆx 1 (t) = K wkx k (t) (63) k=2 ˆx 1 (t) 1 ε(t) ε(t) Δ = x 1 (t) ˆx 1 (t) = K wkx k (t) (64) k=1 = w H x(t) (w 1 1) (65) w 2 w CP = R 1 xx a(θ) a H (θ)r 1 xx a(θ) (59) E[ ε(t) 2 ]=w H R xx w =2P out (66) 8
9 w 1 =1 (PIAA) w LP (46), (47) w LP K 1 > = L P LP (θ) = 1 w H LP a(θ) 2 (67) Capon R xx a(θ) P LP Capon R xx = ASA H + σ 2 I R xx e i =(ASA H + σ 2 I)e i (71) = ASA H e i + σ 2 e i (72) = μ i e i + σ 2 e i (73) =(μ i + σ 2 )e i (i =1, 2,...,K) (74) Δ λ i = μi + σ 2 (i =1, 2,...,K) (75) R xx λ 1 > = λ 2 > = > = λ L >λ L+1 = = λ K = σ 2 (76) σ 2 L λ L+1,...,λ K R xx e i =(ASA H + σ 2 I)e i = ASA H e i + σ 2 e i MUSIC MUSIC(MUltiple SIgnal Classification) S L A L R xx = ASA H L [1] μ i (i =1, 2,...,K) e i (i =1, 2,...,K) ASA H e i = μ i e i (i =1, 2,...,K) (68) μ 1 > = μ 2 > = μ L >μ L+1 = = μ K = 0 (69) e H i e k = δ ik (i, k =1, 2,...,K) (70) δ ik = λ i e i = σ 2 e i (77) (i = L +1,,K) ASA H e i = 0 (i = L +1,,K) (78) A S A H e i = 0 (i = L +1,,K) (79) a H (θ l )e i =0 (l =1, 2,...,L; i = L +1,...,K) (80) e L+1,...,e K L {e 1,, e L } (signal subspace) 9
10 {e L+1,, e K } (noise subspace) MUSIC (K L) P MU (θ) Δ = a H (θ)a(θ) (81) K e H i a(θ) 2 i=l+1 a H (θ)a(θ) = a H (θ)e N EN Ha(θ) (82) Δ E N = [el+1,, e K ] (83) MUSIC θ L {θ 1,,θ L } (76) K > = L [1] :, (2003). [2] S.U.Pillai : Array Signal Processing, Springer- Verlag New York Inc. (1989). [3] H.Krim and M.Viberg : Two Decades of Array Signal Processing Research The Parametric Approach, IEEE Signal Processing Magazine, vol.13, No.4, pp (July 1996). [4] R.O.Schmidt : Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans., vol.ap-34, No.3, pp (Mar. 1986). [5] R.Roy and T.Kailath : ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques, IEEE Trans., vol.assp-37, pp (July 1989). [6], 33, pp [7] P.J.Chung and J.F.Bohme DOA estimation using fast EM and SAGE algorithms, Signal Processing, vol.82, pp , Nov [8] Y.Ogawa and N.Kikuma : High-Resolution Techniques in Signal Processing Antennas, IEICE Trans. Commun., vol.e78-b, No.11, pp (Nov. 1995). [9] W.F.Gabriel : Spectral Analysis and Adaptive Array Supperresolution Techniques, Proc. IEEE, vol.68, No.6, pp (June 1980). [10] C.A.Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 3rd Ed., [11] B.Widrow, et al. : Adaptive Antenna Systems, Proc. IEEE, vol.55, No.12, pp (Dec. 1967). [12] R.L.Riegler and R.T.Compton,Jr. : An Adaptive Array for Interference Rejection, Proc. IEEE, vol.61, No.6, pp (June 1973). [13] R.T.Compton, Jr. : An Adaptive Array in a Spread-Spectrum Communication System, Proc, IEEE, vol.66, No.3, pp (Mar. 1978). [14] Y.Ogawa, et al. : Fading Equalization Using an Adaptive Antenna for High-Speed Digital Mobile Communications, Proc. ISAP, vol.4, 4A2-3, pp (Aug. 1989). [15] Y.Ogawa, et al. : An LMS Adaptive Array for Multipath Fading Reduction, IEEE Trans. Aerosp. & Electron. Syst., vol.aes-23, No.1, pp (Jan. 1987). [16] S.P.Applebaum : Adaptive Arrays, IEEE Trans. Antennas & Propag., vol.ap-24, No.5, pp (Sept. 1976). [17] O.L.Frost,III : An algorithm for linearly constrained adaptive array processing, Proc. IEEE, 60, 8, pp (Aug. 1972). [18] K.Takao, et al. : An Adaptive Antenna Array under Directional Constraint, IEEE Trans. Antennas & Propag. vol.ap-24, No.5, pp (Sept. 1976). [19] K.Takao and N.Kikuma : Tamed Adaptive Antenna Array, IEEE Trans. Antennas & Propag. vol.ap-34, No.3, pp (Mar. 1986). [20] R.T.Compton, Jr. : The Power Inversion Adaptive Array : Concept and Performance, IEEE Trans. Aerosp. & Electron. Syst., vol.aes-15, No.6, pp (Nov. 1979). 10
Fundamentals of Signal Processing for Communications Systems
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE 606-8501 E-mail: kazunori@ikyoto-uacjp ZFMMSE Abstract Fundamentals of Signal Processing for Communications
14.5mm 14.5mm
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 1.119/JETCAS.218.289582,
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)
30 01 3 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. Mar. 01 DOI: 10.3969/j.issn.055-897.01.0.007 DOA 1, 1 1. 150001. 15007 DOA DOA. Cyclic MUSIC.. DOA TN911.7 055-89701)0-0146-05
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 7: Βέλτιστο Φίλτρο Wiener και Γραμμικά Περιορισμένο Φίλτρο Ελάχιστης Διασποράς Εφαρμογή στις Έξυπνες Κεραίες Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Περιγραφή Μαθήματος, Συμβόλαιο Γενικά 1 Στόχοι Μαθήματος: Nα γίνει μια εισαγωγή σε ασύρματα και κινητά
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Περιγραφή Μαθήματος, Συμβόλαιο Γενικά 1 Στόχοι Μαθήματος: Nα γίνει μια εισαγωγή σε ασύρματα και κινητά
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
LAN. On the Dynamic Performance of Indoor Positioning System using Wireless LAN on Smartphone
一 般 社 団 法 人 電 子 情 報 通 信 学 会 信 学 技 報 THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL ITS2015-6 REPORT(2015-06) OF IEICE. THE INSTITUTE OF ELECTRONICS,
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
C F E E E F FF E F B F F A EA C AEC
Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD
SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1
1,a) 2 F0 TUSK F0 F0 F0 F0 TUSK TUSK F0 Prototype of a framework for overviewing the performance of F0 estimators Morise Masanori 1,a) Kawahara Hideki 2 Abstract: This article represents a framework for
Maximum power dynamic acoustic source direction-of-arrival tracking algorithm based on acoustic vector sensor
31 2 2014 2 DOI: 10.7641/CTA.2014.30357 Control Theory & Applications Vol. 31 No. 2 Feb. 2014,, (, 475004) :, (DOA).,, DOA.,, Kalman.. : ; ; ; : TP391 : A Maximum power dynamic acoustic source direction-of-arrival
Vol. 30 No Journal of Jilin University Information Science Edition Sept. 2012
30 5 Vol. 30 No. 5 2012 9 Journal of Jilin University Information Science Edition Sept. 2012 1671-5896 2012 05-0462-08 1 2 3 1 1. 650091 2. 351254 3. 363105 TN914. 5 A Implementation and Application of
Interleaving Differential MMSE Multiuser Detection Based on Cyclic-stationary Period
30 5 2012 9 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. 5 Sept. 2012 DOI: 10.3969/j.issn.0255-8297.2012.05.005 710064 (wide code division multiple access, WCDMA) (interleaving
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
/MAC DoS. A Coding Scheme Using Matched Filter Resistant against DoS Attack to PHY/MAC Layer in Wireless Communications
Vol. 51 No. 9 1499 1506 (Sep. 2010) /MAC DoS 1 2 2 MAC DoS MAC 10 9 MAC DoS LAN Ethernet A Coding Scheme Using Matched Filter Resistant against DoS Attack to PHY/MAC Layer in Wireless Communications Ryuzou
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήματος ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Contents QR Decomposition: An Annotated Bibliography Introduction to Adaptive Filters
Contents 1 QR Decomposition: An Annotated Bibliography... 1 Marcello L. R. de Campos and Gilbert Strang 1.1 Preamble... 1 1.2 EigenvaluesandEigenvectors... 2 1.3 Iterative Methods for the Solution of the
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Fundamentals of Multiplexing and Multiple Access Technologies
464-8603 Tel: +81-52-789-2743 Fax:+81-52-789-3173 E-mail: yamazato@nuee.nagoya-u.ac.jp CDMA SNIR OFDM, MIMO Fundamentals of Multiplexing and Multiple Access Technologies Takaya YAMAZATO EcoTopia Science
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
ΑΣΗΜΑΚΗΣ Κ. ΛΕΡΟΣ. Μόνιµος Επίκουρος Καθηγητής Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΑΣΗΜΑΚΗΣ Κ. ΛΕΡΟΣ Μόνιµος Επίκουρος Καθηγητής Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Οκτώβριος 2012 I. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Ηµεροµηνία γέννησης:
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
: : : NEA 2013 1 : : : (4507) :29-10-2013 2 Περιεχόμενα... 5 ABSTRACT... 6... 7 1:... 8 1.1 :... 8 1.2... 8 1.3... 9 1.4... 10 1.5... 11 1.5.1... 12 1.6... 13 1.6.1... 13 1.6.2 µ... 16 2:... 19 2.1 µ µ...
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering . MUSIC MUSIC TN (2010)
28 3 5 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 28 No. 3 May DOI:.3969/j.issn.255-8297..3. MUSIC 2. MUSIC Taylor MUSIC MUSIC Taylor TN9.7 255-8297()3-289-8 Success Probability
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού
Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού Παναγιώτης Αναστασιάδης Πανεπιστήμιο Κρήτης panas@ edc.uoc.gr ΠΕΡΙΛΗΨΗ Οι προηγμένες τεχνολογίες σύγχρονης μετάδοσης και ιδιαίτερα
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία του φοιτητή του
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Master of science in Networking and Data Communications Ακαδημαϊκό Έτος 2013-2014 Συνδιοργάνωση Το ΤΕΙ Πειραιά και το πανεπιστήμιο Kingston της Μεγάλης Βρετανίας συνδιοργανώνουν
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems
29 8 32 4 Journal of Beijing University of Posts and Telecommunications Aug. 29 Vol. 32 No. 4 :1725321 (29) 427724 CFR 1,2, 3, 3, 1 (1., 1876 ; 2., 413 ; 3., 3615) :.,,.,,.. : ; ; ; : TN911. 72 : A Blind
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
, Snowdon. . Frahm.
- :..... ( ). :., Snowdon.. Frohrib Jennige -.[ ]...[ ] Ghannadi-Asl Zahrai..,.[ ]... Frahm Frahm [ ] Den Hartog. mzahrai@ut.ac.ir, hashemif@conwag.com . - Den Hartog g(t)=0 ω f(t)=p 0 sinωt. ω y st =P
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
Echo path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 1 Array Basics
ECE 5318/635 Antenna Engineering Spring 006 Dr. Stuart Long Chapter 6 Part 1 Array Basics 1 Array Rationale Single elements Usually broad beamwidth Relatively low directivity Often system requirements
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE 802.11 Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης mkafetz@iit.demokritos.gr Το κίνητρο µας-συνεισφορά Η ασύρµατη δικτύωση λαµβάνει ευρείας αποδοχής. Το πρότυπο
ΠΕΡΙΛΗΠΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΠΕΡΙΛΗΠΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Όνομα: Γεώργιος Σταθάκης Εθνικότητα: Ελληνική Ημερομηνία γεννήσεως: 21 Ιουνίου 1972 Τηλέφωνα: +30 2281097114 e-mail: gstath@syros.aegean.gr Σπουδές 1997-2000 Διδακτορικό
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
ΘΕΜΑΤΙΚΗ ΕΥΡΕΤΗΡΙΑΣΗ ΚΑΙ ΚΑΘΙΕΡΩΣΗ ΟΡΟΛΟΓΙΑΣ ΣΤΙΣ ΤΕΧΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ: Η ΕΜΠΕΙΡΙΑ ΣΤΟ ΤΕΕ
1 ΠΕΡΙΛΗΨΗ ΘΕΜΑΤΙΚΗ ΕΥΡΕΤΗΡΙΑΣΗ ΚΑΙ ΚΑΘΙΕΡΩΣΗ ΟΡΟΛΟΓΙΑΣ ΣΤΙΣ ΤΕΧΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ: Η ΕΜΠΕΙΡΙΑ ΣΤΟ ΤΕΕ Κατερίνα Τοράκη Στην εισήγηση αναπτύσσονται τα ζητήματα ορολογίας που προκύπτουν στις βιβλιοθήκες από
ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:
Όνομα Marios Πανεπιστήμιο / Brunel University London Επώνυμο Angelides E-mail Marios.Angelides@brun el.ac.uk Electronic and Computer Engineering Βαθμίδα Professor Επιστημονική Περιοχή Multimedia Content
Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad hoc δίθηπα κε βάζε ελεξγεηαθά θξηηήξηα ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ ΥΟΛΖ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΜΖΥΑΝΗΚΩΝ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΜΔΣΑΓΟΖ ΠΛΖΡΟΦΟΡΗΑ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΛΗΚΩΝ Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
ΗΜΟΣΙΕΥΣΕΣ ΣΕ ΙΕΘΝΗ ΠΕΡΙΟ ΙΚΑ [1] C. Bouras, A. Gkamas, G. Kioumourtzis, Adaptive smooth multicast protocol for multimedia transmission:
ΗΜΟΣΙΕΥΣΕΣ ΣΕ ΙΕΘΝΗ ΠΕΡΙΟ ΙΚΑ [1] C. Bouras, A. Gkamas, G. Kioumourtzis, Adaptive smooth multicast protocol for multimedia transmission: Implementation details and performance evaluation, International
PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.
34 4 2015 8 PLATEAU METEOROLOGY Vol. 34 No. 4 August 2015. X J. 2015 34 4 1167-1176 doi 10. 7522 /j. issn. 1000-0534. 2014. 00043. X / 210044 X X X X 6 μs 1 μs 1 6 μs μs X 2 3 1 / cosθcosφ 1000-0534 2015
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Πειραματική εφαρμογή του αλγόριθμου εκτίμησης DoA MUSIC σε σύστημα εικονικού πολλαπλού δέκτη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Πειραματική εφαρμογή του αλγόριθμου εκτίμησης DoA MUSIC σε σύστημα εικονικού πολλαπλού δέκτη Δεργιαδέ Ευπραξία 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΣΧΗΜΑΤΩΝ... 4 1.1 Είδη
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ηλεκτρονικής Φυσικής (Ραδιοηλεκτρολογίας) Κατεύθυνση: Ηλεκτρονική Τεχνολογία Τηλεπικοινωνιών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΠΡΟΣΔΙΟΡΙΣΜΟΣ
ΨΗΦΙΑΚΕΣ ΤΕΧΝΙΚΕΣ ΧΩΡΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ ΤΟΥ ΔΙΑΓΡΑΜΜΑΤΟΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΕ ΑΣΥΡΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων ΨΗΦΙΑΚΕΣ ΤΕΧΝΙΚΕΣ ΧΩΡΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ ΤΟΥ ΔΙΑΓΡΑΜΜΑΤΟΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΕ ΑΣΥΡΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Εμμανουήλ Θ. Μιχαηλίδης
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΠΟΜΕΝΗΣ ΓΕΝΙΑΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΠΟΜΕΝΗΣ ΓΕΝΙΑΣ ΗΛΙΟΠΟΥΛΟΣ Κ. ΓΕΩΡΓΙΟΣ Επιβλέπων : Βαρουτάς
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
Classification and Comparison of Energy-Efficient Routing Algorithms in Wireless Networks
University of Macedonia Master in Information Systems Computer Networks Professor: A. A. Economides Classification and Comparison of Energy-Efficient Routing Algorithms in Wireless Networks Zinovia I.
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Δυναμική Ανάλυση Κατασκευών με Κατανεμημένη Μάζα και Ακαμψία Πτυχιακή Εργασία Φουκάκη Βαρβάρα
Algorithms to solve Unit Commitment Problem
Algorhms to solve Un Commment Problem Takayuki SHIINA The electric power industry is undergoing restructuring and deregulation. This paper reviews mathematical programming models for the un commment. The