Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

Σχετικά έγγραφα
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Gait Identification Using a View Transformation Model in the Frequency Domain

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ER-Tree (Extended R*-Tree)

Adaptive grouping difference variation wolf pack algorithm

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

A High Precision Iris Feature Extraction and Its Application in Iris Recognition


Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Quick algorithm f or computing core attribute

Detection and Recognition of Traffic Signal Using Machine Learning

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Simplex Crossover for Real-coded Genetic Algolithms

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Stabilization of stock price prediction by cross entropy optimization

Buried Markov Model Pairwise

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Biostatistics for Health Sciences Review Sheet

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

SVM. Research on ERPs feature extraction and classification

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Medium Data on Big Data

Statistical Inference I Locally most powerful tests

Applying Markov Decision Processes to Role-playing Game

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Anomaly Detection with Neighborhood Preservation Principle

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

{takasu, Conditional Random Field

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ


2 Composition. Invertible Mappings

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

A research on the influence of dummy activity on float in an AOA network and its amendments

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Homomorphism in Intuitionistic Fuzzy Automata

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

Secure Cyberspace: New Defense Capabilities

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Kernel Methods and their Application for Image Understanding

NMBTC.COM /

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Homework 3 Solutions

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Solution Series 9. i=1 x i and i=1 x i.

Architecture for Visualization Using Teacher Information based on SOM

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Ψηφιακή Επεξεργασία Φωνής

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Bayesian Discriminant Feature Selection

DATA SHEET Surface mount NTC thermistors. BCcomponents

Prey-Taxis Holling-Tanner

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

High order interpolation function for surface contact problem

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Section 7.6 Double and Half Angle Formulas

Approximation of distance between locations on earth given by latitude and longitude

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MathCity.org Merging man and maths

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Uniform Convergence of Fourier Series Michael Taylor

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

OLS. University of New South Wales, Australia

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Transcript:

(MIRU2010) 2010 7 ROC 567-0047 8-1 E-mail: {makihara,hossain,yagi}@am.sanken.osaka-u.ac.jp ROC 1 1 2 ( ) ROC 2 ROC Adaptive Acceptance Threshold Control using Matching s with Abstract Confidence Values for ROC Curve Optimization Yasushi MAKIHARA, Md. ALTAB HOSSAIN, and Yasushi YAGI Osaka university 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 E-mail: {makihara,hossain,yagi}@am.sanken.osaka-u.ac.jp In two-class classification problems such as one-to-one verification and object detection, the performance is usually evaluated by a so-called Receiver Operating Characteristics (ROC) curve expressing a tradeoff between False Rejection Rate (FRR) and False Acceptance Rate (FAR). On the other hand, it is also well known that the performance is significantly affected by the situation differences between enrollment and test phases. This paper describes a method to adaptively control an acceptance threshold with confidence values derived from situation differences so as to optimize the ROC curve. We show that the optimal evolution of the adaptive threshold in the domain of the distance and confidence value is equivalent to a constant evolution in the domain of the error gradient defined as a ratio of a total error rate to a total acceptance rate. An experiment with simulation and real data demonstrates the effectiveness of the proposed method, particularly under a lower FAR or FRR tolerance condition. Key words rejection rate ROC curve, Acceptance threshold, Confidence values, Error gradient, False acceptance rate, False 1. 2 1 1 2 [1] 2 [2] ID 1 1 2 ( ) ( ) 2

( False Acceptance Rate: FAR ) ( False Rejection Rate: FRR) (ROC) [3] 2 [4] [5], [6] SN (Quality measure) [7] [8] [9] [10] Hossain [11] [12] [13] [14] [15] [16] Kryszczuk [17] evidence space [17] ROC ROC ROC ROC ROC 1 1 2 2. 2. 1 ROC ROC 1 1 ( ) ( ) ( ) 1(a) (Probability Distribution Function: PDF) T A F R (False Rejection Rate: FRR) A F A T T (< T ) FRR FAR ( 1(a)) T L (> T ) FRR FAR ( 1(a)) FRR 100% FAR 0% +. FRR 0% FAR 100% ( ) ( + ) 1(b) FRR FAR ROC [3] ROC 1 1 FRR FAR FRR FAR (Equal Error Rate: EER) ROC 1 1 PDF FRR FAR 3( ) PDF

Probability 1 A FA A FR T T T T L (a) PDF Positive Negative False Rejection Rate P FR 1.0 T T Tight Loose 0.0 T T L 0.0 1.0 False Acceptance Rate P FA (b) ROC PDF ROC Low confidence 2 High confidence Positive Negative Confidence ROC 3( ) PDF ROC ROC ROC PDF ROC 2. 2 2 2 ( 2 ) ( 2 ) PDF ROC 3 FAR 0% T L NoF A T H NoF A (> T L NoF A ) FRR 0% T L NoF R and T H NoF R (< T L NoF R ) ROC T L NoF A T L NoF A T H NoF A ( 3(a) ) T H NoF R T H NoF R T L NoF R T L NoF A T H NoF A T H NoF R T L NoF R 2. 3 t PDF p P (t) p N (t) T FAR R F A (T ) FRR R F R (T )

Probability Probability 3 T L NoFA T H NoFA False acceptance (a) PDF Positive Negative Positive Negative False Rejection Rate P FR False Rejection Rate P FR 1.0 T L NoFA T H NoFA 0.0 0.0 1.0 False Acceptance Rate P FA 1.0 T L NoFA T H NoFA 0.0 0.0 1.0 False Acceptance Rate P FA (b) ROC ( ) ( ) PDF ROC R F A (T ) = T R F R (T ) = 1 T p N (t)dt (1) p P (t)dt. (2) R E (T ) R A (T ) R E (T ) = R F A (T ) + R F R (T ) (3) R A (T ) = R F A (T ) + (1 R F R (T )). (4) R A (T ) R E (T ) g(t ) = dr E(T ) dr A (T ) = pn (T ) p P (T ) p N (T ) + p P (T ). (5) ( g(t ) 1.0) ( g(t ) 1.0) ( g(t ) 0.0) FAR FRR g(t ) g(t ) 2 t c g(t) g(t ) 2. 4 N P N N i (t P i, cp i ) (tn i, cn i ) t c t j =t min + js t, j Z, 0< = j < = (t max t min )/s t (6) c k =c min + ks c, k Z, 0< = k < = (c max c min )/s c (7) i k w P i,k w P i,k = max(1.0 c P i c k /s c, 0) (8) j k PDF p j,k p P j,k = 1 N P wi,k P exp ( (tp i t j ) 2 ) Z k 2σ 2, (9) i Z k PDF j pp j,k s t = 1 σ PDFp N j,k (t j, c k ) g j,k (5). c k g = {g j,k } g =arg min S(ĝ) (10) ĝ S(ĝ)= k,j {(ĝ j,k g j,k ) 2 +α(ĝ j,k ĝ j 1,k ) 2 } (11) subject to ĝ j 1,k > = ĝ j,k, (12) α 2

3. 3. 1 PDF c PDF 0 < = c < = 1 PDF N (µ P (c), σ P (c)) N (µ N (c), σ N (c)) PDF c µ P (c) = 5.0 3.0c, µ N (c) = 7.0 2.0c, σ P (c) = 1.0 0.5c, σ N (c) = 1.0 0.5c, PDF 10,000 ( 4(a)) ( c = 1.0) ( c = 0.0) 10,000 PDF σ = 0.3, s t = 0.01, s c = 0.1 t min = 0.0, t max = 10.0 α = 1.0 z [3] z 1 1 µ(c) σ(c) 4(b) z 0 1 3. 2 5 4 8.0 7.0 6.0 5.0 4.0 (a) (b) z 3.0 0.0 0.2 0.4 0.6 0.8 1.0 Confidence value 5 ( 0.1) 6 ( g = 0.0), ( g = 1.0) ( g = 0.0) ( g = 1.0) ROC 7(a) (AATC) (const) z (Z-norm)

False Rejection Rate 0.5 0.4 0.3 0.2 0.1 Constant Z- norm AATC 6 FAR ( 7(b)) FRR ( 7(c)) z FAR FRR 3. 3 68 32 2,120 8 20 48 1 1 1 Hossain [6] [6] [18] 9 10-1 +1 1 1 11 ROC z False Rejection Rate False Rejection Rate 0.0 0.0 0.1 0.2 0.3 0.4 0.5 False Acceptance Rate 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 (a) Z-Norm AATC 1.E-04 1.E-03 1.E-02 1.E-01 False Acceptance Rate 1.0E-01 1.0E-02 1.0E-03 (b) FAR Z-Norm AATC 1.0E-04 0.0 0.2 0.4 0.6 0.8 1.0 False Acceptance Rate 8 (c) FRR 7 ROC 4. z

9 10 0.5 Constant False Rejection Rate 0.4 Z-norm AATC 0.3 0.2 0.1 1 1 N 2 1. 2 LDA [19] SVM [20] ROC FAR FRR ROC ROC 5. 2 ROC 2 21220003 0.0 0.0 0.1 0.2 0.3 0.4 0.5 False Acceptance Rate 11 ROC z z 1 1 1 1 O(1) z N O(N) ID 1 [1] P. Viola and M. Jones, Robust real-time face detection, Int. J. of Computer Vision, vol. 57, no. 2, pp. 137 154, 2004. [2] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, CVPR2005, II pp. 886 893, 2005. [3] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, The feret evaluation methodology for face-recognition algorithms, Trans. of Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090 1104, 2000. [4] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagi, Gait recognition using a view transformation model in the frequency domain, Proc. of the 9th European Conf. on Computer Vision, Graz, Austria pp. 151 163, May 2006. [5],,, 12 (MIRU2009), pp. 1 8, 7 2009. [6] M. A. Hossain, Y. Makihara, J. Wang, and Y. Yagi,

Clothes-invariant gait identification using partbased adaptive weight control, Proc. of the 19th Int. Conf. on Pattern Recognition, Tampa, Florida USA, Dec. 2008. [7] A. Harriero, D. Ramos, J. Gonzalez-Rodriguez, and J. Fierrez, Analysis of the utility of classical and novel speech quality measures for speaker verification, ICB 09: Proceedings of the Third International Conference on Advances in Biometrics, Berlin, Heidelberg Springer-Verlag pp. 434 442, 2009. [8] F. Alonso Fernandez, F. Roli, G. Marcialis, J. Fierrez, and J. Ortega Garcia, Comparison of fingerprint quality measures using an optical and a capacitive sensor, BTAS07, pp. 1 6, 2007. [9] S. Muller, O. Henniger, and T. U. D. Darmstadt, Evaluating the biometric quality of handwritten signatures, In 2nd International Conference on Biometrics,, 2007. [10] E. Krichen, S. Garcia-Salicetti, and B. Dorizzi, A new probabilistic iris quality measure for comprehensive noise detection, Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International Conference on, pp. 1 6, 27-29 2007. [11] M. A. Hossain, Y. Makihara, J. Wang, and Y. Yagi, Clothing-invariant gait identification using partbased clothing categorization and adaptive weight control, Pattern Recognition,, 2010 (to appear). [12] H. Sellahewa and S. Jassim, Illumination and expression invariant face recognition: Toward quality-based adaptive fusion, BTAS08, pp. 1 6, 2008. [13] M. Gales and S. Young, Robust continuous speech recognition using parallel model combination, IEEE Transactions on Speech and Audio Processing, vol. 4, no. 5, pp. 352 359, 1996. [14] N. Poh, J. Kittler, and T. Bourlai, Improving biometric device interoperability by likelihood ratio-based quality dependent score normalization, BTAS07, pp. 1 5, 2007. [15] J. Fierrez-Aguilar, Adapted Fusion Schemes for Multimodal Biometric Authentication PhD thesis Universidad Politecnica de Madrid, 2006. [16] S. Bengio, C. Marcel, S. Marcel, and J. Mariethoz, Confidence measures for multimodal identity verification, Information Fusion, vol. 3, no. 4, pp. 267 276, 2002. [17] K. Kryszczuk and A. Drygajlo, Improving classification with class-independent quality measures: Q- stack in face verification, In 2nd International Conference on Biometrics, Seoul, South Korea,, 2007. [18],,,,,, vol. 48, no. SIG1(CVIM17), pp. 78 87, Feb. 2007. [19] J. H. P. Belhumeur and D. Kiregeman, Eigenfaces for recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711 720, Jul. 1997. [20] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A discriminant analysis for underd data, Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144 152, 1992.