Application of Object Oriented Programming to a Computational Fluid Dynamics

Σχετικά έγγραφα
Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Finite Field Problems: Solutions

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Detection and Recognition of Traffic Signal Using Machine Learning

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Σημασιολογικός Ιστός (Semantic Web) - XML

EE512: Error Control Coding

(b) flat (continuous) fins on an array of tubes

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

PortSip Softphone. Ελληνικά Ι English 1/20

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Εξερεύνηση χώρου από κινούμενα ρομπότ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Γεωλογικά Γεωτεχνικά Προβλήματα που Απαντώνται σε Θεμελιώσεις Τεχνικών Έργων Παρά τα Ρήγματα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.003: Signals and Systems

Other Test Constructions: Likelihood Ratio & Bayes Tests

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

C.S. 430 Assignment 6, Sample Solutions

, -.

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Rektangulär fläns, Rectangular fin

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Notes on the Open Economy

Almost all short intervals containing prime numbers

If we restrict the domain of y = sin x to [ π 2, π 2

EE101: Resonance in RLC circuits

2002 Journal of Software

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

MathCity.org Merging man and maths

PARTIAL NOTES for 6.1 Trigonometric Identities

ECE 468: Digital Image Processing. Lecture 8

Σχεδίαση και Ανάπτυξη Παιχνιδιού για την Εκμάθηση των Βασικών Στοιχείων ενός Υπολογιστή με Χρήση του Περιβάλλοντος GameMaker

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Concrete Mathematics Exercises from 30 September 2016

Higher Derivative Gravity Theories

ECE 222b Applied Electromagnetics Notes Set 3a

Final Test Grammar. Term C'

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SOAP API. Table of Contents


ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

The Simply Typed Lambda Calculus

Mean-Variance Analysis

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Reminders: linear functions

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΤΗΣ ΑΓΩΓΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Κατά τη σχολική χρονιά θα συνεχίσετε να διδάσκεστε τα βιβλία της περσινής χρονιάς: Here We Go 3, Student s Book (Burlington Books)

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

On the Galois Group of Linear Difference-Differential Equations

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

webpage :

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων

1. (25%) Αναφέρετε πέντε (5) «καλoύς» κανόνες (πρακτικές) σχεδίασης web sites (όχι περισσότερες από δύο γραμμές για κάθε κανόνα)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

Partial Trace and Partial Transpose

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 12 Modulation and Sampling

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

(C) 2010 Pearson Education, Inc. All rights reserved.

( y) Partial Differential Equations

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Bounding Nonsplitting Enumeration Degrees

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Latent variable models Variational approximations.

Section 8.2 Graphs of Polar Equations

Homework 3 Solutions

(The unsupported status of austerity) Μαυροζαχαράκης Μανόλης. (Mavrozacharakis Emmanouil )

Εισαγωγή στη Βιοπληροφορική

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Instruction Execution Times

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Areas and Lengths in Polar Coordinates

A Note on Intuitionistic Fuzzy. Equivalence Relation

Formal Semantics. 1 Type Logic

[1] P Q. Fig. 3.1

Context-aware και mhealth

Laplace s Equation in Spherical Polar Coördinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΣΟΡΟΠΤΙΜΙΣΤΡΙΕΣ ΕΛΛΗΝΙΔΕΣ

6.003: Signals and Systems. Modulation

Transcript:

C03- Alicaion of Objec Oiened Pogamming o a Comaional Flid Dnamics 4--inose@aies.dse.ibaaki.ac.j 4--ishigo@ic.ibaaki.ac.j Takashige Inose, Gadae School of Science and Engineeing, Ibaaki Uniesi, 36-85 Jaan Misako Ishigo, Facl of Engineeing, Ibaaki Uniesi, 36-85 Jaan Objec oiened ogamming is alied o a simlaion of comaional flid dnamics. A flow domain which chaaceizes each a of flow field is eaed as an objec and calclaed indeendenl haing he elaion wih neighbo objecs. We can comose a oal flow field b combining he flow domains as if combining as of zzles. The CFD ssem oides fo ses o geneae aios flow fields easil and o analze he oe all flow aomaicall. (Fig.), CPU PC () CFD HSMAC (4) (5) CPU Foan C CJaa () (3) (OOP) Fig. Flow field. OOP (FlowPasFig. ) OOP Calclaion BondaCondiion Calclaion BondaCondiion CFD OOP CFD FlowPas Calclaion OOP Paamee Recangle Seco Calclaion BondaCondiion Jaa GUI Fig. Flow as objec. - - Coigh 000 b JSCFD

- - Coigh 000 b JSCFD GUI CFD 0 () X Y - ( ) 0 (4) - Θ R, (6) HSMAC Jaa (7) Objec Oiened Fig. 3 Objec and message. Jaa Jaa Jaa C / C CFD CFD OOP CFD

FlowPas Fig. 5 Table, FlowPas CondiionTable secondiion ( ) Paam Fig.4 edicionveloci( ) esidalamon ( ) coecveloci ( ) BondaVale enewveloci ( ) sebondavale ( ) CalclaionMehod bondacondiion ( ) 05 5 5 35 45 55 bondacondiionp( ) gemad( ) BondaCondiion 04 4 4 34 44 54 03 3 3 33 43 53 Fig. 5 FlowPas class. 0 3 4 5 Table FlowPas mehod. 0 3 4 5 secondiion( ) CalclaionMehod BondaCondiion 05 5 5 35 45 55 CalclaionMehod edicion 04 4 4 34 44 54 edicionveloci( ) Veloci( ) 03 3 3 33 43 53 CalclaionMehod esidal esidalamon ( ) 0 3 4 5 Amon( ) 0 3 4 5 CalclaionMehod coec coecveloci( ) Veloci( ) Fig. 4 Flow se field. CalclaionMehod enew enewveloci ( ) Veloci( ) BondaCondiion sebonda sebondavale( ) Vale( ) Bonda Vale CFD BondaCondiion bonda bondacondiion ( ) Condiion ( ) BondaCondiion bonda bondacondiionp( ) CondiionP( ) gemad( ) CondiionTable FlowPas CondiionTable FlowPas Paamee FlowPas FlowPas - 3 - Coigh 000 b JSCFD

dmin,,, Fig. 6 CalclaionMehod class. BondaVale BondaV( ) BondaV( ) gebondau( ) CalclaionMehod gebondav( ) gebondapu( ) CalclaionMehod gebondapv( ) gebondap( ) CalclaionMehod Fig. 7 BondaVale Class. RecangleCalclaion SecoCalclaion (Fig.6) Table 3 BondaVale mehod.,, BondaV( ) CalclaionMehod Table,, BondaV( ) CalclaionMehod gebondau( ) edicionveloci( ) esidalamon( ) gebondav( ) coecveloci( ) enewveloci() gebondapu( ) gebondapv( ) gebondap( ) Recangle Calclaion Seco Calclaion Table Calclaion mehod edicionveloci ( ) esidalamon ( ) coecveloci ( ) enewveloci ( ) BondaVale,, BondaVale BondaVale (Fig.9) BondaVale Table 3 Fig. 9 BondaVale image. - 4 - Coigh 000 b JSCFD

BondaCondiion BondaCondiion bondacondiiont( ) bondacondiionb( ) 0, 0 bondacondiionl( ) bondacondiionr( ) P / 0 P / 0 sebondavalet( ) sebondavaleb( ) (a, b) P / 0 P / 0 sebondavalel( ) sebondavaler( ) / 0 / 0 0 P / P / 0 BondaVale Recangle Seco Seco Seco Seco Fig. Bonda Bonda Bonda Bonda Bonda Condiion Condiion Condiion Condiion Condiion 0 TR TL BR BL BondaCondiion Fig. BondaCondiion Table 3 RecangleBondaCondiion SecoBondaCondiionTR SecoBondaCondiionTL BondaVale SecoBondaCondiionBR SecoBondaCondiionBL sebondavale BondaVale Fig. BondaCondiion class. bondacondiion BondaVale Table 3 BondaVale mehod T T bondacondiion( ) (T, B, L, R) CondiionTable L R L R sebondavale( ) (T, B, L, R) BondaVale B B :BondaValeObjecg : sebondavale() : bondacondiion() Fig. 0 Echange of bonda ale. Simlaion HSMAC Fig. bondacondion() BondaVale - 5 - Coigh 000 b JSCFD

Fig. 3 Gahical se ineface. Fig.4 Fig.5 00 Fig..Main a of Simlaion class. Fig. 4 Eamle. GUI Gahical Use Ineface GUI GUI Jaa AWTAbsac Window Toolki (9) JFCJaa Fondaion Class Swing (0) GUI Fig. 3 GUI Fig. 5 Eamle. - 6 - Coigh 000 b JSCFD

CFD CFD BondaVale GUI FlowPas (), PC Clse, 3, (999),. 4-6. () Vol.J8-D-I(999), -3. (3),, Jaa flowbeans, 98 (999),. 49-4 (4),,,,,,994. (5), (), 37, (985),.383-388. (6),,,993. (7), Jaa,,989. (8) Yoo Hong Jn, Jaa,,997. (9) Seen Holzne, Jaa, IDG,999. (0) Seen Holzne, Jaa Swing Black Book,,000. - 7 - Coigh 000 b JSCFD