Σχετικά έγγραφα
Text Mining using Linguistic Information

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Quick algorithm f or computing core attribute

A Fast Mining Algorithm for Frequent Essential Itemsets

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA


Kenta OKU and Fumio HATTORI

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks


Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Mining Syntactic Structures from Text Database

substructure similarity search using features in graph databases

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

A Survey of Recent Clustering Methods for Data Mining (part 2)

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)


ER-Tree (Extended R*-Tree)

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

i M-1 1. ij f(i, j) N-1. (pixel) 2. M N (x, y) (x, y ) = 256. R(x, y), G(x, y), B(x, y)

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Προγραμματισμός ΙΙ (Java) 6. Διαχείριση δεδομένων

Δομημένος Προγραμματισμός

Security and Privacy: From Empiricism to Interdisciplinarity. Dimitris Gritzalis

Based Modeling: Applications of Genetic Programming and Self-Organizing Maps.

{ueda,keyaki}@lsc.cs.titech.ac.jp, miyazaki@cs.titech.ac.jp. DEIM Forum 2016 E1-5. spotify 1 Last.

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Spindle Production Department

{takasu, Conditional Random Field

2002 Journal of Software

Legal use of personal data to fight telecom fraud

Chap. 6 Pushdown Automata

Test Data Management in Practice

2002 Journal of Software

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Συναρτήσεις, Διαδικασίες και Δομές Ελέγχου Λειτουργίας Κυκλωμάτων (testbenches)

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

± 20% (rated cap. [µf] ) 1000 Leakage Current: For capacitance values > 33000µF, add the value of:

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες

Data mining Εξόρυξη εδοµένων. o Association rules mining o Classification o Clustering o Text Mining o Web Mining

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Εργαστήριο Ιατρικής Φυσικής

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

, Evaluation of a library against injection attacks

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Answer Set Programming with External Sources

Optimal Impartial Selection

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Επερωτήσεις σύζευξης με κατάταξη


Razor. [1], [2] (typical) LSI V/F. Razor. (Timing Fault: TF) [7] Razor [3], [4], [5] DVFS - Dynamic Voltage and Frequency Scaling [6]

MATHACHij = γ00 + u0j + rij

Εργαστήριο 4_1 Λεκτική Ανάλυση - Flex Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Database programming in VC + + :applying ODBC API

443020,,., 61, / : +7 (846)

Standard Template Library (STL)

An Efficient Calculation of Set Expansion using Zero-Suppressed Binary Decision Diagrams

Adaptive grouping difference variation wolf pack algorithm

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου - Δεκεμβρίου

Φροντιστήριο 4 Σκελετοί Λύσεων

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ECE570 Lecture 6: Rewrite Systems

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Anomaly Detection with Neighborhood Preservation Principle

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

Big Data/Business Intelligence

Homomorphism in Intuitionistic Fuzzy Automata

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -


VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων

Library, package και subprograms

Transcript:

DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,, Chen SPM [5](, TI-SPM) PrefixSpan [6], 2,, TI-SPM (, TI) 2,,,.,,, 1. 3,,

,,,,,,,., 2,,, 3,, 1. 4 2. 3.. 4., 3.,,. 5. 2. 2. 1 SPM Agrawal SPM (, SDB) [2]., SDB,.,., [4], 1. 2 A = a 1, a 2,..., a n (, a i. i = 1, 2,..., n), B = b 1, b 2,..., b m (, b i. i = 1, 2,..., m),, A B, A = B. 1 a 1 = b j1, a 2 = b j2,..., a n = b jt 2 n < = t < = m 3 1 < = j 1 j 2... j t < = m 2. A = a 1, a 2,..., a n (, a i. i = 1, 2,..., n) A = B B, A, A =. 3. MinSup(0 < = MinSup < = 1), SDB D, A = a 1, a 2,..., a n (, a i. i = 1, 2,..., n), {Seq A = Seq, (sid, Seq) D, sid Seq } > = Size(D) MinSup, A D MinSup, Sup(a i) a i D, Size(D) D 4. SDB D A, B \A, A. 1 A = B 2 Sup(A) = Sup(B) Sup(A) Sup(A) {s s = Seq, Seq D}. 2. 2 TI-SPM Agrawal [2], 2., 2015 1 11,, 2015 1 11, 1. Chen 2 TI-SPM [5]., TI-SPM, SDB D, MinSup(0 < = MinSup < = 1), TI- TI- TI-., TI, TI-, TI-, TI-, TI- 5. TI r 1 T 1, T 2,..., T r 1, TI I k (k = 0, 1,..., r 1, r) {0} (k = 0) {t 0 t < I k = T 1 } (k = 1) {t T k 1 t < = T k } (k = 2, 3,..., r 1) {t T r 1 t} (k = r)

6. TI- r 1 T 1, T 2,..., T r 1 r + 1 TI TI- V. TI-SPM,, 7. TI- I, TI- V, B TI { b 1 (k = 1) B = b 1, & 1, b 2, & 2,..., b k 1, & k 1, b k (k > = 2), i = 1, 2,..., k b i I, v = 1, 2,..., k 1 & v V. 8. TI- A = (a 1, t 1 ), (a 2, t 2 ),..., (a n, t n ) TI- B = b 1, & 1, b 2, & 2,..., b m 1, & m, b m, 1 < = j 1 j 2... j m < = n {j m }, B A TI-, B = A. 1 b 1 = a j1, b 2 = a j2,..., b m = a jm 2 t ji t ji 1 & i 1 (i = 2, 3,..., s) 9. TI- SDB D, MinSup (0 < = MinSup < = 1), TI- α {(sid, s) (sid, s) D, α = s} > = Size(D) MinSup, α TI-, Chen PrefixSpan [6], TI, I-PrefixSpan [5]., I-PrefixSpan, I-PrefixSPan 10. TI- A = (a 1, t 1 ), (a 2, t 2 ),..., (a n, t n ), TI- B = b 1, & 1, b 2,..., b m 1, & m 1, b m, B A TI- 1 m < = n 2 a i = b i (1 < = i < = m) 3 t i t i 1 & i 1 (1 i < = m 1) 11. A = (a 1, t 1), (a 2, t 2),..., (a n, t n), A TI- TI- B = b 1, & 1, b 2,..., b m 1, & m 1, b m m < = n a ik = b k (1 < = k < = m), A A = (a 1, t 1), (a 2, t 2),..., (a n, t n ), A A B 1 n = n + m i m i m. (0 < = i m < = n) 2 B A TI- 3 A n i m A n i m 12. TI- A = (a 1, t 1 ), (a 2, t 2 ),..., (a n, t n ) TI- B = b 1, & 1, b 2,..., b m 1, & m 1, b m A = (a 1, t 1), (a 2, t 2),..., (a n, t n )., A B = (a m+1, t m+1), (a m+2, t m+2),..., (a n, t n ) B A TI- 13. SDB SDB D, D α TI- SDB D α. I-PrefixSpan SDB D, MinSup TI- I D, SDB., α SDB, β, I TI, TI & Size(D) MinSup, α & β TI-, α & β, TI- 3.. 3. 1 ( Type, Explain, Code, Name) 4 Code Name null,, 613, (,, 613, ) (,,null,null)., 613, Type, Code Name null., Type Code Name Explain, null. Explain,, [3],.

,,,,, Type Type, Code Name 3. 2,, Type, Explain, Code, Name 4,, Wright [8].,,, SDB.,,,,,, Name Type,Explain,Code, 3. 3 3. 3. 1 TI-SPM,, TI-SPM I-PrefixSpan [5], TI-, TI-,, 2 3. 3. 2 T-PrefixSpan, TI-SPM, Huang [7] T-PrefixSpan. Huang,,, 3, T-PrefixSpan, T-PrefixSpan,,,, SDB. 14. (i, t) I, i I t, i t (i, t) 15. s s,. s = (i 1, t 1), (i 2, t 2),..., (i n, t n)., s length(s) length(s) n, O s = i 1, i 2,..., i n s 16. T I k s = (i 1, t 1), (i 2, t 2),..., (i n, t n), T I k T I k t k+1 t k (k = 1, 2,..., n 2, n 1) 17. SDB D S, SDB D D {(sid, s) sid, s S}, D 2 sid. SDB SDB SDB, SDB, 18. P MinSup (0 < = MinSup < = 1), SDB D, P = i 1, X 1, i 2, X 2,..., i n 1, X n 1, i n ( j i j, k X k 5 (min k, mod k, ave k, med k, max k ), O P = i 1, i 2,..., i n 1, i n, O P D SDB MinSup,, min k, mod k, ave k, med k, max k., O P D S = i 1, t 1, i 2, t 2,..., i m 1, t m 1, i m, i k = i j k, i k+1 = i j k+1 k = 1, 2,..., n 1, 1 < = j 1 j 2... j n 1 j n < = m, T I k = t j k+1 t j k Set T Ik., X k = (min k, mod k, ave k, med k, max k ),min k = min Set T Ik, mod k Set T Ik, ave k Set T Ik, med k Set T Ik, max k = max Set T Ik.,

X j = (min j, mod j, ave j, med j, max j) (1 < = j n), min j = max j, i j i j+1, min j = max j = 0, O P P 19. SDB D A, B \A, A 1 A.B A, B, A = B. 2 (1), A = a 1, T 1, a 2, T 2,..., a n 1, T n 1, a n, B = b 1, T 1, b 2, T 2,..., b m 1, T m 1, b m, a k = b jk, a k+1 = b jk+1 k = 1, 2,..., n 1, 1 < = j 1 j 2... j n < = m., T k = (min k, mod k, ave k, med k, max k ), T j k = (min j k, mod j k, ave j k, med j k, max j k ), min k > = min j k max k < = max j k. 3 Sup(A) < = Sup(B) Sup(A) Sup(A) {s s = S, (sid, S) D, sid S }., 1 SDB D, MinSup = 0.4 1 SDB D sid 10 (A, 1), (B, 3), (C, 7), (E, 10) 20 (A, 1), (B, 4), (E, 7) 30 (A, 2), (B, 6), (B, 9) 40 (A, 2), (B, 5) 50 (A, 2), (B, 7), SDB SDB O D 2, O D MinSup = 0.4, A, B, E, A, B, B, E, A, B, E. 2 D SDB O D sid 10 A, B, C, E 20 A, B, E 30 A, B, B 40 A, B 50 A, B O D, D, A, B, E D, A, B A B, D {2, 3, 3, 4, 5},,,,,, A, (2, 3, 3, 3, 5), B, B, E, A, B, E, B, (3, 5, 5, 5, 7), E, A, (2, 2, 2, 2, 3), B, (3, 5, 5, 5, 7), E., D MinSup = 0.4 A, B, E, A, (2, 3, 3, 3, 5), B, B, (3, 5, 5, 5, 7), E, A, (2, 2, 2, 2, 3), B, (3, 5, 5, 5, 7), E., A, B, A, (2, 3, 3, 3, 5), B, A, (2, 2, 2, 2, 3), B, (3, 5, 5, 5, 7), E. PrefixSpan [6] SDB T-PrefixSpan. T-PrefixSpan Algorithm 1., SDB D SDB Original(D), S Original(S), A B AB. X n X n, S n S n, A n T (A n)., Smirnov-Grubbs [9] α = 0.05. ( Type, Explain, Code, Name) 4, t.,,,, Type, Explain, Code, Name SDB, T-PrefixSpan, 4..,,,, 4. 1 1991 11 19 2015 10 4,

Algorithm 1 T-PrefixSpan Input : SDB D, MinSup Output : P Call : T-PrefixSpan(,D) Procedure : T-PrefixSpan(α,D α) 1: D α = Original(D α ) 2: if α! = null then 3: P GetProperTime(α, D α, D α) 4: end if 5: B {β (s = D α, β s) (Sup(β) > = Size(D) Minsup)} 6: for β B do 7: D αβ { sid, s D α αβ = Original(s)} 8: Call T-PrefixSpan(αβ, D αβ ) 9: end for Subroutine : GetProperTime(α, D α, D α) 1: if length(α) == 1 then 2: return α 3: end if 4: K {k sid, s D α,original(s) D α, k = s,original(k) == α} 5: T = {{}, {},..., {}}( T = length(α) 1) 6: for k K do 7: for i = 0,..., length(k 1) do 8: T i T (k i+1 ) T (k i ) 9: end for 10: end for 11: W = α 0, α 1,..., α length(α) 1 12: for i = 0,..., length(α) 2 do 13: T i 14: min i = min T i 15: mod i = (T i ) 16: ave i = (T i ) 17: med i = (T i ) 18: max i = max T i 19: X i = (min i, mod i, ave i, med [ i], max [ i]) 20: W = α 0,..., α i, X i, α i+1..., α length(α) 1 21: end for 22: return W, 2 4. 2,, T-PrefixSpan,,,, OS : Windows7 Professional 64bit CPU : Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.65GHz(8CPUs) Memory : 16GB Java 1.8.0 45 2 (1), (2)TUR-Bt,,,, 3 3 TUR-Bt 265 488 19.64 19.16 53.21 49.89 10 9 11 11 460 465 655 485 WATATUMI [10],, ID., HP [11], (1), (2)TUR-Bt 2, 3. (1), (2)TUR-Bt 4. 3 1, 2, 3, 4, 5, 6. 1,.,

2 TUR-Bt 6 TUR-Bt 3 4 TUR-Bt 5 TUR-Bt,, T-PrefixSpan,,,., 0.02 1.0, 0 7,, 2, 2. 7, 8..,. 7 8,,,., MinSup = 0.02, 8, 7,., 7 5. 5. 1 SDB,

,, TUR-Bt,,,,, 7, (A) (#25240014), HP [11], 8.,,,,,, 5,,,,. 5. 2 PrefixSpan [6], T-PrefixSpan,, CloSpan [4],Clasp [12],CSpan [13],, 2,,, T-PrefixSpan TI-SPM, [1],,,,,. DEIM Forum 2014, F6-2, 2014. [2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceeding of the 20th International Conference on Very Large Data Bases, pp. 487-499, 1994. [3],,,,. DEIM Forum 2015, G5-1, 2015. [4] X. Yan, J. Han and R.Afshar. CloSpan: Mining closed sequential patterns in large databases. Proc.SIAM Int 1 Conf. Data Mining (SDM 03), pp. 166-177, May 2003. [5] Yen-Liang Chen, Mei-Ching Chiang and Ming-Tat Ko. Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications 25, pp. 343-354, 2003. [6] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, Mei-Chun Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix- Projected Pattern Growth. Proceeding of 2001 International Conference on Data Engineering, pp. 215-224, 2001. [7] Zhengxing Huang, Xudong Lu and Huilong Duan. On mining clinical pathway patterns from medical behaviors. Artificial Intelligence in Medicine 56 (2012) 35-65, 2012. [8] Aileen P. Wright, Adam T. Wright, Allison B. McCoy and Dean F.Sittig. The use of sequential pattern mining to predict next prescribed medications. Journal of Biomedical Informatics 53(2015) 73-80, 2015. [9] http://aoki2.si.gunma-u.ac.jp/lecture/grubbs/grubbs.html [10] WATATUMI. http://www.corecreate.com/02 01 izanami.html [11] http://www.med.miyazaki-u.ac.jp/home/jyoho/ [12] Antonio Gomariz, Manuel Campos, Roque Marin and Bart Goethals. Clasp: An efficient algorithm for mining frequent closed sequences. PAKDD 2013, LNAI7818, Part I, pp. 50-61, 2013. [13] V.Purushothama Raju and G.P. Saradhi Varma. MIN- ING CLOSED SEQUENTIAL PATTERNS IN LARGE SE- QUENCE DATABASES. International Journal of Database Management Systems ( IJDMS ) Vol.7, No.1, February 2015.