Fundamentals of Signal Processing for Communications Systems

Σχετικά έγγραφα
Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Sparse Modeling and Model Selection

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Fundamentals of Array Antennas


w o = R 1 p. (1) R = p =. = 1

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.


ST5224: Advanced Statistical Theory II

Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems

LAN. On the Dynamic Performance of Indoor Positioning System using Wireless LAN on Smartphone

Κινητά Δίκτυα Επικοινωνιών

Spectrum Representation (5A) Young Won Lim 11/3/16

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Gradient Descent for Optimization Problems With Sparse Solutions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Ψηφιακή Επεξεργασία Φωνής

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

Monolithic Crystal Filters (M.C.F.)

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Σήματα και Συστήματα ΙΙ

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Ψηφιακή Επεξεργασία Φωνής

Fundamentals of Multiplexing and Multiple Access Technologies

Simplex Crossover for Real-coded Genetic Algolithms

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Mean-Variance Analysis

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

C F E E E F FF E F B F F A EA C AEC

, Evaluation of a library against injection attacks

6.003: Signals and Systems. Modulation

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΠΟΜΕΝΗΣ ΓΕΝΙΑΣ

Probabilistic Approach to Robust Optimization

HMY 799 1: Αναγνώριση Συστημάτων

/MAC DoS. A Coding Scheme Using Matched Filter Resistant against DoS Attack to PHY/MAC Layer in Wireless Communications

ITU-R SA (2010/01)! " # $% & '( ) * +,

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

4.6 Autoregressive Moving Average Model ARMA(1,1)

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Interleaving Differential MMSE Multiuser Detection Based on Cyclic-stationary Period

Applying Markov Decision Processes to Role-playing Game

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Ακαδηµαϊκό Ετος

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

HONDA. Έτος κατασκευής

Fundamentals of Signals, Systems and Filtering

Οδηγός λύσης για το θέμα 2

ΘΕΜΑ: ΣΧΕΔΙΑΣΗ ΕΙΔΙΚΩΝ ΚΕΡΑΙΩΝ ΤΥΠΩΜΕΝΩΝ ΜΟΝΟΠΟΛΩΝ ΚΑΙ ΥΙΟΘΕΤΗΣΗ ΤΟΥΣ ΣΕ ΜΙΜΟ ΔΙΑΤΑΞΕΙΣ

Ψηφιακή Επεξεργασία Φωνής

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

FORMULAS FOR STATISTICS 1

Οδηγός λύσης θέματος 2

MAC. MAC Protocol for Hidden Terminal Problem Alleviation using Transmission Pause Control in Wireless Multi Hop Networks

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Analysis of prosodic features in native and non-native Japanese using generation process model of fundamental frequency contours

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών

Buried Markov Model Pairwise

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Ψηφιακή Επεξεργασία Φωνής

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Sampling Basics (1B) Young Won Lim 9/21/13

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -


A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών

Measurement and Analysis of the Vibrations of Buldings and Technical Constructions

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Στοχαστικά Σήματα και Τηλεπικοινωνιές

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Matrices and Determinants

Transcript:

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE 606-8501 E-mail: kazunori@ikyoto-uacjp ZFMMSE Abstract Fundamentals of Signal Processing for Communications Systems Kazunori HAYASHI Graduate School of Informatics, Kyoto University, Yoshida Honmachi Sakyo-ku, Kyoto, 606-8501, JAPAN E-mail: kazunori@ikyoto-uacjp Various signal processing schemes, which have been originally developed for wireless communications systems, are etensively applied for optical communications systems In order to understand fundamental ideas of those schemes efficiently in a systematic manner, we eplain some basic signal processing schemes for a linear regression model, which is considered as a typical problem in communications systems Key words ZF zero-forcing), minimum-norm solution, MMSE minimum mean-square-error), maimum likelihood, maimum ratio combining, compressed sensing 1 MIMO multi-input multi-output) ZF zero-forcing) MMSE minimum mean-square-error) T H diaga 1 a N a 1,, a N N N tra A deta A I 0 1

a p p > = 1 a l p - p = n i=1 i p ) 1 p a 0 a l 0-2 = 1 1) N T C N A = a 1 a N C M N y = y 1 y M T C M y = A + v 2) y A v = v 1 v M T C M A y v R y = Eyy H R = E H R v = Evv H = σ 2 vi 3 3 1 ZF ZF ˆ zf = W H zfy = + W H zfv 3) W H zf ZF N M ZF W H zfa = I 4) A M = N) W H zf = A 1 5) A M > N 4) W zf 4) 3) SNR: signal-to-noise power ratio) W zf 3) E Wzfv) H H Wzfv H = tr W zfevv H H W zf = σvtr W 2 zfw H zf SNR W zf 6) W zf = arg min tr W H W st W H A = I 7) W C M N L zf W) = tr W H W + = tr W H W + ϕ H n W H a n e n) L zf W) W H = W + tr W H a n e n )ϕ H n a n ϕ H n 8) = W + AΦ H 9) ϕ n N e n n 1 0 N Φ = ϕ 1 ϕ N L zfw) = 0 W H W zf = AΦ H 7) A Φ = A H A) 1 10) W H zf = A H A) 1 A H 11) M = N W H zf = A 1 5) M = N ZF 2 ˆ ls = arg min C N A y 2 2 12) A y 2 2 = A y) H A y) = H A H A H A H y y H A + y H y H A y 2 2 = A H A A H y = 0 13) ZF ˆ ls = A H A) 1 A H y 14) ZF 7) 2

A ZF noise enhancement) ZF 6) 11) σvtr W 2 zfw H zf = σvtr 2 A H A) 1 15) A A = U Ξ 0 M N) N V H 16) U C M M, V C N N Ξ A Ξ = diagξ 1 ξ N A H A = VΞ 2 V H A H A) 1 = VΞ 2 V H σvtr W 2 zfw H zf = σ 2 v 1 ξ n 2 17) A ξ n 0 3 2 M < N 4) W zf ZF M < N y = A y A y = A l 2- ˆ mn = arg min C N 2 2 st y = A 18) L mn) = 2 2 + A y) H ϕ 19) L mn) = 0 ˆ H mn = A H ϕ A 3 3 MMSE ϕ = AA H ) 1 y 20) ˆ mn = A H AA H ) 1 y 21) ZF MMSE MMSE MMSE MMSE MMSE MMSE f f ˆ mmse = fy) 22) J mmse f = E fy) 2 2 y 23) y p y) y y) = E y = p y)d 24) 1, J mmse f =E fy) 2 2 y =E fy) y) + y) 2 2 y = fy) y) 2 2 + E y) 2 2 y + fy) y) H E y) y + E y) H y fy) y) = fy) y) 2 2 + E y) 2 2 y > = E y) 2 2 y 25) ˆ mmse =)fy) = y) MMSE y) 0 MMSE W lmmse W lmmse ˆ lmmse = W H lmmsey 26) W lmmse = arg min E W H A + v) 2 W C M N 2 27) J lmmse W) = E W H A + v) 2 2 = E W H A + W H v ) H W H A + W H v ) = E trw H A + W H v )W H A + W H v ) H = tr W H AE H A H W + tr W H AEv H W tr W H AE H + tr W H Ev H A H W + tr W H Evv H W tr W H Ev H tr E H A H W tr Ev H W + tr E H = tr W H AR A H W tr W H AR + σvtr 2 W H W tr R A H W + tr R 28) 1 3

J lmmse W) W H = AR A H W AR + σ 2 vw = 0 29) W H lmmse = R A H AR A H + σ 2 vi) 1 30) MMSE MMSE, y) 1 3 4 S S N y ˆ S N P ˆ y) ˆ S N ˆ map = arg ma P y) 31) SN P y) = py )P ) py) 32) P ) ˆ ml = arg ma py ) 33) SN py ) 2) v py ) = 1 π M detr v ep y ) A 2 2 σv 2 34) ˆ ml = arg min S N y A 2 2 35) A S S S N N 3 5 ) 2) C, a = a 1 y = a + v 36) a M T C M y 1,, y M SNR ) y 1,, y M ) SNR w mrc ˆ mrc = w H mrcy = w H mrca + w H mrcv 37) SNR γ mrc = E wh mrca 2 E w H mrcv 2 = σ2 w H mrcaa H w mrc σ 2 vw H mrcw mrc 38) E 2 = σ 2 Aw = λw w H w H Aw = λw H w A λ = wh Aw w H w ) 38) SNR aa H w mrc aa H aa H 1 w mrc = a 39) γ mrc = σ2 a H aa H a σ 2 va H a = σ2 a H a σ 2 v = a 1 2 σ 2 σ 2 v + a 2 2 σ 2 σ 2 v + + a M 2 σ 2 σ 2 v 40) SNR SNR 36) 2) w mrc ˆ mrc = w H mrcy = w H mrca + w H mrcv 41) 4

ˆ mrc SNR γ mrc = E wh mrca 2 E w H mrcv 2 = wh mrcar A H w mrc σ 2 vw H mrcw mrc 42) w mrc AR A H SNR γ mrc = wh mrcar A H w mrc w H mrcr v w mrc 43) w mrc AR A H R v AR A H w = λr v w 3 6 A A y ) v y R y = Eyy H = AR A H + σ 2 vi 44) R y M λ 1 > = λ 2 > = > = λ M, AR A H M ν 1 > = ν 2 > = > = ν M R y M λ m q m λ m q m = R y q m = AR A H + σ 2 vi)q m = ν m + σ 2 v)q m λ m ν m λ m = ν m + σ 2 v, m = 1, 2,, M 45) M > N A R AR A H M N 0 45) λ m = νm + σ 2 v, m = 1,, N σ 2 v, m = N + 1,, M 46) rank A H = N A H N A H ) M N q N A H ) R y q = σ 2 vq q σ 2 v M N 46) M N q N+1,, q M N A H ) q H ma = 0, m = N + 1,, M 47) Q S = q 1,, q N Q N = q N+1,, q M RQ S ) RQ N ) 2 R ) ) 47) RQ N ) = N A H ) q 1,, q M RQ S ) = RQ N ) ) RA) = N A H ) RQ S ) = RA) RQ N ) = RA) 47) A A 3 7 N M < N y = A 3 5 M < N y = A ˆ l0 = arg min 0 st y = A 48) l 0 l 0 - NP l 0 - l 1 - ˆ l1 = arg min 1 st y = A 49) A M < N ϵ > 0 ˆ cl1 = arg min 1 st A y 2 2 < = ϵ 50) µ > 0 50) ˆ l1 l 2 = arg min µ 1 + 1 2 A y 2 2 ) 51) 51) l 1 - l 2 - l 1 l 2 Lasso least absolute shrinkage and 5

selection operator) 6 ˆ lasso = arg min A y 2 2 st 1 < = t 52) 50), 51) 7 4 4 1 2) s r H v r = Hs + v 53) H h 0 0 0 h L h 1 h 0 h L hl H = 0 0 C M M 0 0 0 h L h 0 h 0,, h L DFT: discrete Fourier transform) 1 1 1 2π 1 1 2π 1 M 1) D = 1 j j 1 e M e M M 2πM 1) 1 2πM 1) M 1) j j 1 e M e M H h 0, h 1,, h L H = D H ΛD 54) λ 1 λ M = MD h 0 h L 0 M L 1) 1 2 ZF 5) 55) r = D H ΛDs + v 56) ŝ = W H r 57) W H = D H ΛD) 1 = D 1 Λ 1 D H = D H Λ 1 D 58) MMSE 30) ) 1 W H = σs 2 H H σs 2 HH H + σvi 2 ) 1 = σs 2 D H Λ H D σs 2 D H ΛΛ H D + σvi 2 1 = D H Λ H ΛΛ H + σ2 v I) D Ess H = σ 2 s I D W H ZF MMSE IDFT D H DFT D FFT: fast Fourier transform) ZF MMSE MLSE: maimum likelihood sequence estimation) 4 2 σ 2 s r = Hp + v 59) p = p 1 p M T H 59) r = Ph + v 60) Λ = diagλ 1 λ M 2λ 1,, λ M T, 6

P p 1 p M p 2 p 2 p 1 p 3 P = p M p M 1 p 1 h H 61) 60) h H 53) s Ehh H MMSE ZF P 3 ZF 2 60) h 4 3 MIMO MIMO 2) N M s C N r C M H C M N v C M r = Hs + v 62) 62) MIMO 62) MIMO H MIMO 11 MIMO MIMO 4 4 N M d 1 3 Ehh H MMSE d sinθ 0 1 d θ incoming plane wave antenna M-1)d n θ n d sin θ n d sin θn ϕ n = 2π η 63) η 1 s 1, s 2,, s N m r m = s ne jϕnm + v m 64) v m 0, σ 2 v r = r 1 r M T = v = v 1 aθ) = 1, e j2π d sin θ η s n aθ n ) + v 65) v M T,, e N 1)d sin θ j2π η A = aθ 1 ) aθ N ) s = s 1 2) T 66) s N T r = As + v 67) s A N M M > N 47) q H ma = 0, m = N + 1,, M 68) q m R = Err H M N Sθ) = 1 M m=n+1 ah θ)q m 2 69) θ, θ = θ n n = 1,, N) 0 MUSIC multiple signal classification) 12 13 7

5, 8 10 ) z = + jy j: ) fz) z z fz) = 1 fz) z 2 j fz) y fz) z = 1 2 8 fz) + j fz) y z z = z z = 1 z z = z z = 0 ) ) A 1) A 2) A 3) A 4) z = z 1 z M T, z m = m + jy m z H = 1 2 1 2 M + j y 1 + j y 2 + j y M A 5) a, A ) z H a = a A 6) z H ) z H Az = Az A 7) z H ) T a = a A 8) ) T A = A + A T A 9) ) fz) f = f 1 f 2 + j f y 1 + j f y 2 f M + j f y M A 10) Z Z H tr Z H tr f = 2 f z H A 11) ) Z H A = A A 12) ) Z H AZ = AZ A 13) 1,,, 2000 2,,, vol 43, no 4, pp 188-195, 1999 3 DL Donoho, Compressed sensing, IEEE Trans Inf Theory, vol52, no4, pp1289-1306, April 2006 4 EJ Candes and T Tao, Decoding by linear programming, IEEE Trans Inf Theory, vol51, no12, pp4203-4215, Dec 2005 5 EJ Candes, J Romberg, and T Tao, Robust uncertainty principles: eact signal reconstruction from highly incomplete frequency information, IEEE Trans Inf Theory, vol52, no2, pp489-509, Feb 2006 6 R Tibshirani, Regression shrinkage and selection via the lasso, J R Statist Soc B, vol58, no1, pp267-288, 1996 7 K Hayashi, M Nagahara, T Tanaka, A User s Guide to Compressed Sensing for Communications Systems, IEICE Trans Commun, Vol E96-B, No 03, pp685-712, Mar 2013 8 L Schwartz, 6,, 1971 9 S Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, 1996 10 T Kailath, A Sayed, B Hassibi, Linear Estimation, Prentice Hall, 2000 11 MIMO 2009 12 R O Schmidt, Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans Antennas and Propag, Vol AP-34, Vo 3, pp 276-280, 1986 13,, Fundamentals Review, Vol 8, No 3, pp 143-150, Jan 2015 8