Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006



Σχετικά έγγραφα
Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,

Π(n) : 1 + a + + a n = αν+1 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35)

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Αλγόριθμοι και Πολυπλοκότητα

3η Σειρά Γραπτών Ασκήσεων

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Κεφάλαιο 2.4 Matrix Algorithms

Παράλληλοι Υπολογισµοί (Μεταπτυχιακό)

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου

E(G) 2(k 1) = 2k 3.

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II

Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία

Ανάγκη Ανάπτυξης Μοντέλων και Δομών Χωρικών Δεδομένων

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Α. Θα καλεί υποπρόγραμμα INPUT που θα διαβάζει τις τιμές του πίνακα MAP.

Μεθοδολογία Παραβολής

Ταξινόμηση. Σαλτογιάννη Αθανασία

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Έξι βαθμοί διαχωρισμού

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Αλγοριθμικές Τεχνικές

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων 6η Διάλεξη

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Γραφικά Υπολογιστών: Εμφάνιση σε 2D

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Δομές Δεδομένων & Αλγόριθμοι

6 Γεωμετρικές κατασκευές

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

4. ΔΙΚΤΥΑ

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

Επιχειρησιακή Έρευνα

8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Η επιτάχυνση και ο ρόλος της.

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07

ΟΜΑΔΕΣ. Δημιουργία Ομάδων

1 ΘΕΩΡΙΑΣ...με απάντηση

1η Σειρά Γραπτών Ασκήσεων

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης

Ταξινόμηση με συγχώνευση Merge Sort

3η Σειρά Γραπτών Ασκήσεων

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts)

Θεωρία Γραφημάτων 8η Διάλεξη

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης

Μεθοδολογία Έλλειψης

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ

Θεωρία Γραφημάτων 5η Διάλεξη

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

References. Chapter 10 The Hough and Distance Transforms

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

ΚΕΦΑΛΑΙΟ 5: ΑΠΕΙΚΟΝΙΣΗ ΚΑΙ ΑΠΟΚΟΠΗ

Κατανεμημένα Συστήματα Ι

Δομές Δεδομένων και Αλγόριθμοι

Κεφάλαιο 3 Βασική Σχεδίαση και Επεξεργασία

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Αλγόριθµοι Divide-and- Conquer

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

Θεωρία Γραφημάτων 11η Διάλεξη

πάχος 0 πλάτος 2a μήκος

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

1 η δεκάδα θεµάτων επανάληψης

Transcript:

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006

Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος γείτονας (Nearest neighbor) Κυρτό περίβλημα (Convex hull) Παράλληλοι Αλγόριθμοι 2/28

Component labelling Ορισμός: Δίνεται ένας διδιάστατος πίνακας από 0-1 pixels. Ζητείται να ανατεθεί μια ετικέτα σε κάθε 1-pixel έτσι ώστε κάθε δύο 1-pixels να έχουν την ίδια ετικέτα ανν τα δύο αυτά pixels είναι στην ίδια συνεκτική συνιστώσα. 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 Παράλληλοι Αλγόριθμοι 3/28

Component labelling Αλγόριθμος δύο φάσεων: 1 η φάση (αρχικοποίηση): κάθε 1-pixel παίρνει ετικέτα τη θέση του στον πίνακα 2 η φάση (ενημερώσεις): ενημέρωσε την ετικέτα με την ελάχιστη ετικέτα ανάμεσα στην τρέχουσα και τις γειτονικές της Παράλληλοι Αλγόριθμοι 4/28

Παράδειγμα 11 12 15 17 18 22 24 26 28 31 41 46 47 48 55 65 68 72 75 77 78 81 82 11 11 15 17 17 11 15 15 17 22 31 46 46 47 46 55 68 72 65 68 68 72 72 11 11 15 15 17 11 15 15 17 11 22 46 46 46 46 46 68 72 55 68 68 72 72 11 11 15 15 15 0 11 15 15 15 11 11 46 46 46 46 46 68 72 46 68 68 72 72 Παράλληλοι Αλγόριθμοι 5/28

Χειρότερη περίπτωση Θ(Ν): μέγιστη εσωτερική διάμετρος (μικρότερο μήκος μονοπατιού από 1-pixels, ώστε κάθε ζευγάρι από 1-pixels να ενώνεται) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Παράλληλοι Αλγόριθμοι 6/28

Αλγόριθμος Levialdi 1 η φάση (συρρίκνωση): συρρικνώνουμε κάθε component μέχρι να μείνει μόνο ένα 1-pixel 2 η φάση (επέκταση): δίνουμε ετικέτα και την επεκτείνουμε σε όλα τα 1-pixels της ίδιας συνιστώσας Παράλληλοι Αλγόριθμοι 7/28

Αλγόριθμος Levialdi (συν.) 0 0 0 0 * 1 * 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Παράλληλοι Αλγόριθμοι 8/28

Ιδιότητες μετασχηματισμού Δεν συγχωνεύονται ποτέ δύο συνιστώσες Δεν διασπάται καμία συνιστώσα Χρόνος Με επαγωγή: στο βήμα t, κάθε (i,j) pixel θα είναι 0-pixel για i+j<t+1 2 N-1 Παράλληλοι Αλγόριθμοι 9/28

Επέκταση Κάθε επεξεργαστής φυλάει τα 2 N-1 βήματα της φάσης συρρίκνωσης και τα αντιστρέφει (πολύ χώρο) Χρόνος: 2 N-1 βήματα Συνολικός χρόνος 4 N-2 βήματα Παράλληλοι Αλγόριθμοι 10/28

Αναδρομικός Αλγόριθμος Divide and conquer: διαίρεση του πίνακα σε 4 τεταρτημόρια και ανάθεση σε αυτούς ετικέτες Συγχώνευση συνιστωσών ως προς τον κάθετο άξονα Συγχώνευση συνιστωσών ως προς τον οριζόντιο άξονα Χρόνος: Ο( N) Παράλληλοι Αλγόριθμοι 11/28

Παράδειγμα (αναδρομικού) 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 A B D D D Β D Β E D Β C D I J F G J G K J G K K G H Α L L L L L L L E L L M L Α P P P P P P P E P P P P P P P P I N M N P P N N K N N K P P K K N H K K P H Παράλληλοι Αλγόριθμοι 12/28

Ανάλυση Για τις συγχωνεύσεις έχουμε Ο( N) βήματα: Το πολύ N διαφορετικές συνιστώσες μπορούν να βρίσκονται στα όρια Γράφος G παριστάνει τις συνιστώσες στα όρια (πρόβλημα εύρεσης συνιστωσών στο γράφο G) Πίνακας γειτνίασης σε κατάλληλη μορφή (sorting O( N), routing O( N)) Pipeline τις N αλλαγμένες ετικέτες Τ( N) Τ( N/2) + Ο( N ) = Ο( N) Παράλληλοι Αλγόριθμοι 13/28

Μετασχηματισμοί Hough Ορισμός: Δίνεται μια διδιάστατη εικόνα και μια γωνία θ (-π/2 θ π/2). Ο μετασχηματισμός Hough υπολογίζεται αν χωρίσουμε την εικόνα σε παράλληλες λωρίδες πάχους ενός pixel που σχηματίζουν γωνία θ με τον x-άξονα και στη συνέχεια αθροίσουμε τις τιμές των pixels σε κάθε λωρίδα. Παράλληλοι Αλγόριθμοι 14/28

Αλγόριθμος Χρήση μετρητή b i για κάθε λωρίδα ( 2N+1 μετρητές) Μετακίνηση του μετρητή πάνω, δεξιά ή πάνω-δεξιά, ανάλογα με τη γωνία θ, το τρέχων κελί και το κελί εκκίνησης (τοπική απόφαση) Αυξάνειητιμήτουμετρητήότανβρίσκει1 Έξοδος σε Ο( N) βήματα πάνω ή δεξιά Παράλληλοι Αλγόριθμοι 15/28

Παράδειγμα Παράλληλοι Αλγόριθμοι 16/28

Εφαρμογές Με διαφορετικές γωνίες βρίσκουμε αντικείμενα σε μια εικόνα (π.χ. ύπαρξη δίσκου) Με pipeling M διαφορετικών γωνιών χρόνος Ο(Μ+ N) Θέλουμε όλες τις γωνίες της μορφής πj/2 N, με j [- N, N] χρόνος Ο( N) Παράλληλοι Αλγόριθμοι 17/28

Κοντινότερος γείτονας Εύρεση κοντινότερου αντικειμένου για κάθε 1-pixel (για κάθε pixel p βρίσκει το κοντινότερο 1-pixel με διαφορετική ετικέτα) Εύρεση κοντινότερου αντικειμένου για κάθε αντικείμενο Παράλληλοι Αλγόριθμοι 18/28

Κοντινότερο αντικείμενο για pixel 1. Βρίσκουμε το κοντινότερο pixel σε κάθε λωρίδα (τροποποίηση του μετασχηματισμού Hough, σήμα που βρίσκει το κοντινότερο αντί για άθροιση) 2. Εύρεση κοντινότερου από αριστερά και από δεξιά και επιλογή του πλησιέστερου 3. σε όλη την εικόνα: πj/2 N, με j [- N, N] Παράλληλοι Αλγόριθμοι 19/28

Κοντινότερο αντικείμενο για αντικείμενο Για κάθε ένα pixel δημιουργούμε ένα πακέτο πληροφοριών: ετικέτα του, απόσταση από πλησιέστερο αντικείμενο και ετικέτα αντικειμένου Ταξινομούμε τα πακέτα αυτά με βάση την ετικέτα τους και αν είναι ίδια με βάση την απόσταση τους (Ο( N) χρόνος) Το πρώτο πακέτο για κάθε αντικείμενο θα δίνει το κοντινότερο αντικείμενο Παράλληλοι Αλγόριθμοι 20/28

Χρόνος Ο( N) βήματα για να υπολογιστεί το συντομότερο αντικείμενο προς κάθε αντικείμενο Είναι βέλτιστο, αλλά όχι work efficient (καλύτερο με mesh of trees: O(log^2N) χρόνο με O(N) επεξεργαστές) Παράλληλοι Αλγόριθμοι 21/28

Κυρτό περίβλημα Ορισμός: Δίνεται μια συλλογή από σημεία S στο επίπεδο. Το κυρτό περίβλημα των σημείων είναι το μικρότερο κυρτό πολύγωνο που περιλαμβάνει όλατασημείατουs. Σε N τυχαία σημεία (3N βήματα, Ν-κελιά) Σε διδιάστατη εικόνα (3 N βήματα, N-κελιά) Παράλληλοι Αλγόριθμοι 22/28

Κυρτό περίβλημα για Ν σημεία Ταξινόμηση σημείων ως προς x- συντεταγμένη (Ν βήματα) Υπολογισμός των upper hull σημείων θ i,j : γωνία μεταξύ p i,p j και αρνητικού y-άξονα Ζητούμενο: το κοντινότερο από δεξιά p j για το οποίο το θ i,j είναι μέγιστο (αν το p i είναι σημείο στο περίβλημα, τότε το p j είναι το επόμενο σημείο) Παράλληλοι Αλγόριθμοι 23/28

Λήμμα: Δίνεται μια συλλογή σημείων p 1,,p N ταξινομημένα ως προς το x- συντεταγμένη. Το σημείο p i είναι σημείο στο περίβλημα ανν x 1 <x i <x N και r(i ) i, όπου το r(i ) είναιημικρότερητιμήτουj>i, για την οποία η θ i,j μεγιστοποιείται. Διαισθητικά: Το p j είναι αριστερά από το p i, άρα το ray από το p i δεν τέμνει κανένα ευθύγραμμο τμήμα του περιβλήματος. Παράλληλοι Αλγόριθμοι 24/28

Διαδικασία υπολογισμού: Υπολογισμός r(i) για κάθε i (σε Ν βήματα) στέλνοντας κάθε σημείο προς τα αριστερά. Ο i-επεξεργαστής υπολογίζει το θ i,j και κρατάει το μεγαλύτερο που έχει βρει. Από αριστερά προς τα δεξιά μεταβιβάζεται στον i-επεξεργαστή το max i i r(i ). Ο i-επεξεργαστής ελέγχει αν max i i r(i ) i (σε N βήματα). Χρόνος : 3Ν (Ν ταξινόμηση, 2Ν για upper/lower hull points) Παράλληλοι Αλγόριθμοι 25/28

Κυρτό περίβλημα για εικόνα N* N εικόνα με 0-1 pixels 4 N υποψήφια σημεία για το περίβλημα: το πιο πάνω και το πιο κάτω κάθε στήλης και τα 1-pixels της πιο αριστερής και πιο δεξιάς στήλης που περιέχει 1-pixels Upper hull σημεία: είσοδος στον πίνακα γραμμήγραμμή, κάθε επεξεργαστής κρατάει το πρώτο και το τελευταίο 1-pixel που συναντά και εφαρμόζεται ο προηγούμενος αλγόριθμος (είναι ταξινομημένα κατά x-συντεταγμένη) Παράλληλοι Αλγόριθμοι 26/28

Κυρτό περίβλημα για εικόνα (συν.) Υπολογισμός των αριστερότερων και δεξιότερων στηλών που έχουν 1-pixels: κάθε επεξεργαστής όταν παίρνει 1- pixel απότηστήλητουτοαποθηκεύειδεξιά(τόρος). Συνεχίζεται αυτό μέχρι να λάβει από αριστερά έναν 1, οπότε στέλνει δεξιά τον 1 με τη μικρότερη x- συντεταγμένη. Μετά από N βήματα κάθε pixel της αριστερότερης στήλης θα έχει εισαχθεί και θα φυλάσσεται σε κάποιον επεξεργαστή. Με ένα σήμα βρίσκουμε τη στήλη που είναι αριστερότερη και με ένα ακόμα το μαθαίνουν όλοι. Αυτό θέλει χρόνο 2 N Παράλληλοι Αλγόριθμοι 27/28

Συμπεράσματα Είναι αρκετά work efficient (ελέγχουμε Ν pixels) Σε mesh of trees έχουμε Ο(logN) βήματα σε N * N επεξεργαστές για logn εικόνα. Παράλληλοι Αλγόριθμοι 28/28