A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

Σχετικά έγγραφα
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

High order interpolation function for surface contact problem

New Adaptive Projection Technique for Krylov Subspace Method

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

Wavelet based matrix compression for boundary integral equations on complex geometries

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Constitutive Relations in Chiral Media

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Buried Markov Model Pairwise

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

An Efficient Calculation of Set Expansion using Zero-Suppressed Binary Decision Diagrams

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Simplex Crossover for Real-coded Genetic Algolithms

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Νοέμβριος 2009

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Implementation and performance evaluation of iterative solver for multiple linear systems that have a common coefficient matrix

Orthogonalization Library with a Numerical Computation Policy Interface

Detection and Recognition of Traffic Signal Using Machine Learning

TUNING FORK TUNES. exploring new scanning probe applications

Numerical Analysis FMN011

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

Probabilistic Approach to Robust Optimization

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

Congruence Classes of Invertible Matrices of Order 3 over F 2

Hydrologic Process in Wetland

Motion analysis and simulation of a stratospheric airship

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Two-parameter preconditioned NSS method for non-hermitian and positive definite linear systems

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

CUDA FFT. High Performance 3-D FFT in CUDA Environment. Akira Nukada, 1, 2 Yasuhiko Ogata, 1, 2 Toshio Endo 1, 2 and Satoshi Matsuoka 1, 2, 3

Κβαντικη Θεωρια και Υπολογιστες

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Applying Markov Decision Processes to Role-playing Game

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Mantel & Haenzel (1959) Mantel-Haenszel

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Stabilization of stock price prediction by cross entropy optimization

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Prey-Taxis Holling-Tanner

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

DESKTOP - Intel processor reference chart

Metal Oxide Varistors (MOV) Data Sheet

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

CorV CVAC. CorV TU317. 1

Adaptive grouping difference variation wolf pack algorithm

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Tridiagonal matrices. Gérard MEURANT. October, 2008

( ) 2 and compare to M.

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Research on Economics and Management

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Thin Film Precision Chip Resistor-AR Series

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Arbitrage Analysis of Futures Market with Frictions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

No item Digit Description Series Reference (1) Meritek Series SI Signal Inductor LI: Leaded Inductor PI: Power Inductor

Discretization of Generalized Convection-Diffusion

Transcript:

Vol. 3 No. 3 189 198 (Sep. 2010) 1 1 1 2 2 Arnold Folk Winther A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Takeshi Mifune, 1 Yu Hirotani, 1 Takeshi Iwashita, 1 Toshio Murayama 2 and Hideki Ohtani 2 This paper presents a fast finite element (FE) electromagnetic analysis on multicore processer systems. A geometric multigrid method is used to solve the linear equations arising from the FE formulation. A special ordering technique, based on the concept of block multicolor ordering, is proposed for parallelization of the Arnold, Folk and Winther s smoother. Numerical tests show a good parallel performance of the presented multigrid solver with an appropriate adjustment of the number of colors and block size. 1 Kyoto University 2 Sony Corporation 1. 1) PC E 1) 2),3) 4) 6) 1 3) 5) curl 7) 10) 7) AFW Arnold Fork Winther AFW 189 c 2010 Information Processing Society of Japan

190 AFW 11) 14) OpenMP 2. 2.1 E ( [ν( E)] ω 2 ɛ + σ ) E = iωj 0 (1) iω 1) i ω σ ɛ ν J 0 (1) 1) 2.2 IC Incomplete Cholesky G m M A mx m = b m (2) 1 m M A m x m b m A m C Nm Nm, (3) x m C Nm, (4) b m C Nm (5) N m G m m =1 N 1 >N 2 >... > N M 2 Ω m Ω m+1 Ω m Ω m+1 V 5) G m v m MGV(A m, b m, v m) (1) m = M A M x M = b M v M m M (2) (2) S pre(a m, b m, v m) (3) b m+1 R m(b m A mv m), v m+1 0 (4) V MGV(A m+1, b m+1, v m+1) (5) v m v m + P mv m+1 (6) S post(a m, b m, v m) (1) G M N M (2) (6) S pre S post v m (3) (5) R m C N m+1 N m P m C Nm N m+1 G m G m+1 G m+1 G m R m P m 2 R m P m 6),15) G m G 1 A m m >1 5) A m+1 = R ma mp m (6)

191 MGV(A 1, b 1, v 1) 1 COCR Conjugate Orthogonal Conjugate Residual 16) COCR 1 S pre S post AFW COCR COCR 2.3 AFW S pre S post AFW 7),10), 1 Hiptmair 8) AFW G m Ψ m Ω m i Ψ m Ω m,i Ω m 1 G m AFW i Ψ m Ω m,i 1 Ω m,i Fig. 1 Example of node-based patch Ω m,i. 1 10) 3. OpenMP OpenMP COCR COCR MGV A m m >1 (6) MGV R m P m MGV S pre S post AFW MGV G M N m OpenMP 3.1 AFW AFW AFW 3),11) AFW

192 2 Ω m,i (= Ω T m,i ) Fig. 2 Ω m,i (= Ω T m,i ) when using the brick elements. AFW [ ] i [ ] ij i ij Ω m,i = {j Ω m : k Ω m,i, [A m] kj 0} (7) Ω T m,i = {j Ω m : k Ω m,i, [A m] jk 0} (8) Ω m,i = Ω T m,i [A m] ij 0 i j Ω m,i = Ω T m,i 2 AFW 2 m (a) Ω i [v] j j Ω i [b] j j Ω i [v] j j Ω i (b) r = b Av i (1) Ω i [v] j j Ω i [r] j j Ω i (2) [r] j j Ω i j Ω T i [v] j j Ω i (a) (b) i 1 i 2 i 1 i 2 i 1 i 2 3 l x = l y = l z =2 Fig. 3 Example of the multicolor ordering (l x = l y = l z =2). (a) (b) (a) Ω i1 Ω i2 Ω i1 Ω i2 (b) Ω i1 Ω i2 Ω T i 1 Ω T i 2 Ω i1 Ω T i 2 (i, j, k) i j k =0, 1,... x y z color(i, j, k) = mod(i, l x)+l x mod (j, l y)+l xl y mod (k, l z) (9) l x l y l z x y z l x l y l z l xl yl z 3 l x = l y = l z =2 1 2 AFW (a) l x l y l z 2 (b) l x l y l z 3 A m CRS Compressed Row Storage 2) (a) CCS Compressed Column Storage 2) (b) CRS (a) (b) MGV(A 1, b 1, v 1) v 1 (3) v m+1 0 (2) S pre v m =0 S pre (b) (b) (3) b m A mv m (b)

193 (a) S post (a) (a) (b) (9) l x l y l z 3 3.2 12),13) AFW AFW AFW x y z m x m y m z (i, j, k) color(i, j, k) = mod( i/m x,l x)+l x mod ( j/m y,l y)+l xl y mod ( k/m z,l z) (10) (10) m x = m y = m z =1 4 l x = l y = l z = m x = m y = m z =2 12),13) 2 (b) l x l y l z 2 (10) nx +1 ny +1 nz +1 p = l x m x l y m y l z m z n x n y n z x y z 4. PC 1 Fortran 95/2003 Intel Visual Fortran 11.0 /O2 /Qopenmp/Qparallel ( ) < 10 10 3 AFW l x = l y = l z = l m x = m y = m z = m 4.1 5 6 2 1 1/8 12 PML Perfectly Mached Layer 1) x y z x y z 48 (11) 1 Table 1 Computers. 4 l x = l y = l z = m x = m y = m z =2 Fig. 4 Example of the block multicolor ordering (l x = l y = l z = m x = m y = m z =2). PC1 PC2 OS Windows XP Windows XP professional x64 professional x64 CPU Intel Core 2 Extreme Intel Core i7 QX9770 3.2 GHz 950 3.06 GHz 4 4 L2: 6 MB 2 L2: 256 KB 4 L3: 8 MB 8GB 12GB

194 5 1 Fig. 5 Test model 1. Fig. 7 7 Comparizon between the FEM and analytical solution. Table 2 2 Performance comparison of the preconditioners. 6 Fig. 6 2 [mm] Test model 2 [mm]. IC 1 24 2855 (13.5) (574.4) 2 15 18728 (187.4) (45732.0) 1 2 PC1 PC2 (s) 345,744 4.6 1 r z E z 7 PML 2 6 2 x y z 128 6,390,144 4.2 IC 1 2 IC COCR 2 1 2 PC1 PC2 AFW m 1 l 2 IC E φ E-φ 1) IC E E-φ 17) 2.2

195 4.3 AFW AFW 3 4 1 2 PC1 PC2 3 4 m 1 m >1 m =1 2 4.4 1 2 PC1 PC2 5 6 1 4 2 8 Core i7 3.1 l =2 m =1 AFW p (11) G 1 N thread p>10n thread (12) 5 6 3 1 Table 3 Number of iterations and solution time in sequential computing (Test model 1). l 3 m 1 2 3 5 10 15 2 3 42 22 21 22 23 23 (28.9) (14.9) (13.3) (13.1) (13.3) (12.9) 3 3 30 22 23 23 23 23 (23.7) (15.2) (14.4) (14.3) (13.0) (12.9) 4 3 27 22 20 22 23 23 (23.3) (15.2) (13.3) (13.1) (12.8) (12.8) 5 3 24 22 23 22 24 23 (21.3) (14.5) (13.7) (12.5) (13.1) (12.8) 6 3 25 21 22 23 24 23 (20.0) (12.8) (12.7) (12.9) (13.1) (12.8) PC1 (s) 24 13.5 (s) 4 2 Table 4 Number of iterations and solution time in sequential computing (Test model 2). l 3 m 1 2 3 5 10 15 2 3 15 16 15 16 16 16 (242.5) (221.6) (196.9) (193.0) (183.7) (180.2) 3 3 19 15 16 15 17 17 (313.8) (216.7) (209.4) (185.7) (191.7) (187.6) 4 3 20 16 15 16 17 15 (340.7) (231.4) (203.0) (196.1) (192.5) (172.4) 5 3 17 17 15 15 16 16 (307.9) (244.8) (204.9) (187.8) (184.8) (180.5) 6 3 17 17 17 15 16 16 (313.5) (245.1) (223.7) (186.8) (183.5) (179.7) PC2 (s) 15 187.4 (s) (12) (12) (12) /

196 5 4 1 Table 5 Number of iterations and solution time in parallel computing (Four threads, test model 1). l 3 m 1 2 3 5 10 15 2 3 22 21 22 23 23 ( ) (8.1) (7.5) (7.1) (7.2) (7.8) 3 3 30 22 23 23 23 23 (14.7) (8.5) (8.3) (7.4) (8.1) (10.2) 4 3 27 22 20 22 23 23 (13.5) (8.0) (7.4) (7.2) (8.8) (11.4) 5 3 24 22 23 22 24 23 (10.1) (7.9) (7.3) (7.1) (11.5) (11.3) 6 3 25 21 22 23 24 23 (9.2) (6.9) (6.9) (8.5) (11.6) (12.8) PC1 (s) 24 13.5 (s) (12) 6 8 2 Table 6 Number of iterations and solution time in parallel computing (Eight threads, test model 2). l 3 m 1 2 3 5 10 15 2 3 16 15 16 16 16 ( ) (68.1) (60.5) (61.1) (60.3) (63.2) 3 3 19 15 16 15 17 17 (96.6) (65.5) (64.4) (58.9) (64.4) (69.0) 4 3 20 16 15 16 17 15 (106.7) (70.0) (61.9) (62.5) (67.7) (68.9) 5 3 17 17 15 15 16 16 (96.8) (74.1) (62.0) (60.2) (68.0) (78.6) 6 3 17 17 17 15 16 16 (98.9) (74.5) (69.0) (60.6) (70.8) (90.6) PC2 (s) 15 187.4 (s) (12) AFW 1 l =2 m =5 2 l =2 m =10 7 2 Table 7 Effect of hyper-threading technology (Test model 2). ON 8 16 (60.3) OFF 4 16 (68.1) PC2 (s) l 3 =2 3 m =10 1.9 3.1 4.5 2 l = 2 m = 10 ON/OFF 7 3.1 ON 2.8 OFF 4.6 1 PC1 PC2 8 x y z 48 64 96 3 345,744 811,200 2,709,792 PC2 8 1 4.4 2 3 G 1 (12) 8 2 8 8 8 PC2 4

197 14) 8 1 Fig. 8 Speed-up ratio (Test model 1). PC2 PC1 L2 3 CPU PC2 PC1 5. AFW PC AFW 1) Jin, J.: The Finite Element Method in Electromagnetics, 2nd edition, John Wiley and Sons (2002). 2) Barrett, R., et al. Templates (1996). 3) Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM (2003). 4) Hackbusch, W.: Multigrid Methods and Applications, Springer-Verlag (1985). 5) Briggs, W.L.: A Multigrid Tutorial, 2nd edition, SIAM (2000). 6) Zhu, Y. and Cangellaris, A.C.: Multigrid Finite Element Methods for Electromagnetic Field Modeling, IEEE Press (2006). 7) Arnold, D., Falk, R. and Winther, R.: Multigrid in H(div) and H(curl), Numer. Math., Vol.85, pp.197 218 (2000). 8) Hiptmair, R.: Multigrid Method for Maxwell s Equations, SIAM J. Numer. Anal., Vol.36, pp.204 225 (1998). 9) Weiss, B., Biro, O., Caldera, P., Hollaus, K., Paoli, G. and Preis, K.: A Multigrid Solver for Time Harmonic Three-Dimensional Electromagnetic Wave Problems, IEEE Trans. Magn., Vol.42, No.4, pp.639 642 (2006). 10) PC B Vol.127, No.8, pp.911 917 (2007). 11) Doi, S. and Washio, T.: Ordering Strategies and Related Techniques to Overcome the Trade-off between Parallelism and Convergence in Incomplete Factorizations, Para. Comput., Vol.25, pp.1995 2014 (1999). 12) Iwashita, T. and Shimasaki, M.: Block Red-Black Ordering Method for Parallel Processing of ICCG Solver, Lecture Notes in Computer Science, Vol.2327, pp.175 189, Springer (2002). 13) Iwashita, T. and Shimasaki, M.: Algebraic Block Red-Black Ordering Method for Parallelized ICCG Solver with Fast Convergence and Low Communication Costs,

198 IEEE Trans. Magn., Vol.39, No.3, pp.1713 1716 (2003). 14) ICCG Vol.2009-HPC-121, No.11 (2009). 15) Watanabe, K., Igarashi, H. and Honma, T.: Convergence of Multigrid Method for Edge-Based Finite-Element Method, IEEE Trans. Magn., Vol.39, No.3 (2003). 16) Sogabe, T. and Zhang, S: A COCR Method for Solving Complex Symmetric Linear Systems, J. Comput. Appl. Math., Vol.199, No.2, pp.297 303 (2007). 17) Mifune, T., Takahashi, Y. and Iwashita T.: Folded Preconditioner: A New Class of Preconditioners for Krylov Subspace Methods to Solve Redundancy-Reduced Linear Systems of Equations, IEEE Trans. Magn., Vol.45, No.5, pp.2068 2075 (2009). 1998 1998 PD 2000 2003 2007 IEEE SIAM AEM ( 22 1 26 ) ( 22 5 4 ) 2003 2007 IEEE 2008 1987 1991 University of California Santa Barbara Department of Computer Science 1986 1988