Proposal of Torque Feedforward Control with Voltage Phase Operation for SPMSM

Σχετικά έγγραφα
Proposal of Flux-Weakening Control for SPMSM Based on Final State Control Considering Voltage Limit

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

AC Servo Motor Based Position Sensorless Control System Making Use of Springs

Gain self-tuning of PI controller and parameter optimum for PMSM drives

HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

Harmonic analysis of armature current for high speed permanent magnet synchronous motor

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

Homework 8 Model Solution Section

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

6.003: Signals and Systems. Modulation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

TeSys contactors a.c. coils for 3-pole contactors LC1-D

EL 625 Lecture 2. State equations of finite dimensional linear systems

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3


MICROMASTER Vector MIDIMASTER Vector

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

DC SERVO MOTORS. EC057B Series Salient Characteristics E E

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Utkin Walcott & Zak ¼

Current Sense Metal Strip Resistors (CSMS Series)

Computation Method to Improve Three-phase Voltage Imbalance by Exchange of Single-phase Load Connection

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

DC SERVO MOTORS Previous N23XX Series. EC057C Series Salient Characteristics

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

IXBH42N170 IXBT42N170

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Feasibility Study of a 6.6 kv, 1 MW Transformerless BTB-Based Loop Controller. System Design and Zero-Sequence-Current Reduction

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Input Ranges : 9-75 VDC

No-load iron loss of permanent magnet synchronous motors

Detection and Recognition of Traffic Signal Using Machine Learning

Instruction Execution Times

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

RDN-250i Application / Benefits Model No. Servo Motor Maker SPECIFICATIONS Table Dia. Horizontal [kg] Center Height Resister Dia.

DC040B Series Salient Characteristics

Monolithic Crystal Filters (M.C.F.)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Digital motor protection relays

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

Ανάλυση Υβριδικού Συστήµατος Παραγωγής Ηλεκτρικής Ενέργειας που συνδυάζει ΑΠΕ και Τεχνολογίες Υδρογόνου ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

[1] P Q. Fig. 3.1

Westfalia Bedienungsanleitung. Nr

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος


Control Theory & Applications PID (, )

Assignment 1 Solutions Complex Sinusoids

TYJX Series Rare Earth Permanent Magnet Excited Three Phase Synchronous Motor

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

E62-TAB AC Series Features

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

Rotor Design and Analysis of 4/2 SRMs to Produce Continuous Torque using Finite Element Method

2.153 Adaptive Control Lecture 7 Adaptive PID Control

SCOPE OF ACCREDITATION TO ISO 17025:2005

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

7AAC63-90 SINGLE-PHASE MOTORS PERMANENT CAPACITOR 7AACC SINGLE-PHASE MOTORS CAP START - CAP RUN. squirrel cage induction motors 7AACC63-100


Bulletin 1489 UL489 Circuit Breakers

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Thin Film Precision Chip Resistor-AR Series

21 2 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Feb TM464

SMD Transient Voltage Suppressors

ιπλωµατική εργασία του φοιτητή του Τµήµατος Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστηµίου Πατρών

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

DC054B Series Salient Characteristics

E62 AC Series Features

Metal Oxide Varistors (MOV) Data Sheet

[3.2] 38.0[4.3] [12.9] , [.71] [.00021].8[.09] 13.2[6.0] 230

First Certificate in English Language (Lower), University of Cambridge England.

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Coordinated control of a doubly fed induction generator wind turbine with series grid-side converter under unbalanced grid voltage conditions

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

DATA SHEET Surface mount NTC thermistors. BCcomponents

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Transcript:

VT-- SPMSM Proposal of Torque Feedforward Control with Voltage Phase Operation for SPMSM Takayuki Miyajima (Yokohama National University) Hiroshi Fujimoto (The University of Tokyo) Masami Fujitsuna (DENSO CORPORATION) Abstract SPMSMs (Surface Permanent Magnet Synchronous Motors) are employed for electric power steering systems and machine tools. Theore, SPMSM drive systems should achieve fast torque response, wind operating range, and low torque ripple. For fast torque response and wind operating range, fast flux weakening control is necessary. However, current feedback control cannot achieve fast flux weakening control because it cannot operate voltage phase directly. In this paper, a torque feedforward controller with voltage phase operation is proposed. In transient state, voltage limit should be considered with derivative terms. By use of PWM hold model for FF controller, derivative terms can be considered. Finally, simulations and experiments are performed to show the advantages of the proposed method. PWM (SPMSM, voltage amplitude saturation, PWM hold model, torque feedforward control ). (SPMSM) SPMSM d, q () PWM () (FF) (3) (4) FF () (6) (7) (8) (9) FB () () FF SPMSM FF PWM. SPMSM dq SPMSM dq y = x = [ ] T, u = [v d v q] T (), (), (3) ẋ(t)=a c (ω e )x(t)b c u(t) [ ω e K e ] T } () y(t)=c c x(t) () [ ] R ω L e L A c(ω e) B c = ω e R L L (3) C c I v d, q : d, q R: L: ω e :, q : d, q K e : T (4) T = K mt (4) K mt = P K e, P : /6

E V [k] T[k] t T [k] Current Reference Generator i d[k] i q[k] Decoupling Control C d[z] C q[z] Td[k] Tq[k] SVM θe[k] θe[k] i u[k] SPMSM i w[k] uw θ INV e[k] dq [k] [k] kt u (k )T u PWM Fig.. PWM hold Fig.. Block diagram of conventional method qaxis PWM V [k], ±E(E: ) () PWM (3) (4), () ON T [k] ẋ(t) = A c x(t) B c u(t), y(t) = C c x(t) () x[k ] = A sx[k] B s T [k], y[k] = C sx[k] (6) A s = e A ct u, B s = e A ct u / B c E, C s = C c (7) PWM (6), (7), E E T [k] 3 SPMSM PWM () PWM ω e K e T u E = V dc (V dc : PWM (8), (9), () T = [ T d ) x[k ]=A s (ω e )x[k] B s (ω e ) T q ] T ( T d, q : d, q ON T [k] [ ] } T ω e K e T u V dc (8) y[k] = C sx[k] = C cx[k] (9) A s (ω e ) = e A c(ω e )T u, B s (ω e ) = e A c(ω e ) T u Bc V dc () SPMSM () 3. 3 (), () FB (3) PI C d, q (s) T u stin C d, q [z] vd v 3 V q > V max (V max := 3 dc : Fig. 3. 3 max min T K mt daxis Point at the intersection of voltage limit circle with constant torque line ) C d, q [z] v d [k]=v d [k] ω e[k]l q[k] () vq [k]=v q [k] ω e[k](l d [k] K e) () C d, q (s)= L d, qs R, τ = T u (3) τs 3 (T : ) d, q i d, i q (4), (), (6), (7) i d[k]= ω ek el R ωel (i q max)(i q min) (4) max if T [k] > K mt max i q[k]= min elseif T [k] < K mt min () otherwise T [k] K mt max = ωeker Va R ω el R ω el (6) min = ωeker Va R ω el R ω el (7) V a i d[k] > i d[k] = (Space Vector Modulation: SVM) θ e(=.ω et u) (3) (8) T [k] T [k] = T [k] Tmax if T [k] > Tmax (8) T [k] otherwise T [k] = [ T d [k] T q[k]] T (9) T u T max (:= 3 3 ): dq ON T a T [k]: /6

C[z] Current i [k] T ff[k] T B s (ωe)as(ωe))ˆx[k]b s (ωe)i [k] T [k] [k] Reference [ ωeke/] Generator T T ff[k] ˆx[k] 4 Pn[z] I C[z] e[k] i[k] HPWM (SVM) θe[k] θe[k] θe[k] dq uw Fig. 4. Block diagram of conventional method SPMSM INV S () i [k] 6 Fig. 6. Eq. (3) Eq. () δff[k] δff[k] Tmax sinδff[k] Tmax cos δff[k] Tmax sinδff[k] Tmax cos δff[k] Eq. () B s (ωe)as(ωe))ˆx[k] B s (ωe)i [k] [ ωeke/] T C[z] C [z] T ff[k] Feedforward controller C [z] of proposed method T [k] Current Reference Generator Fig.. i [k] 3 C[z] T ff[k] T ff[k] T [k] ˆx[k] Pn[z] I C[z] e[k] i[k] HPWM (SVM) θe[k] θe[k] θe[k] dq uw SPMSM INV Block diagram of proposed method S () 4 FF C [z] FB C [z] (8) () T ff [k]=b (ω e )A(ω e )ˆx[k]B (ω e )x d [k ] [ ] T ω ek et u V () dc FF C [z] FF FB C [z] ˆx[k] := [î d [k] î q [k]] T i [k ] (8) C [z] FB C d [z], C q[z] 3 3 FF FF 6 () FB FF FB 3 3 FF C[z] () FF T ff [k] > T max d, q ON T ff = T max () i q T [k] i q[k] =A s î d [k] A s î q[k] B s T dff [k] ( ) B s T qff [k] ωeke () V dc A sij, B sij (8) A s (ω e ), B s (ω e ) i j T dff, qff : T ff d, q T dff [k] = T max sin δ ff [k], T qff [k] = T max cos δ ff [k] F [k] () () (3) F [k] := i ω q[k]a s î d [k]a s î q[k]b e K e T u s V dc () B s Bs ( )} F [k] = T max sin δ ff [k] tan Bs (3) B s δ ff : T ff () (3) (4) F [k] > T max (4) (4) T ff [k] d, q (3) δ ff () sin F [k] T δ ff [k]= max tan B s B s π sin F [k] () T max tan B s B s () δ ff q δ ff d i d î d [k ] 3 3 (4) FF ω e >, d /dt < ω e <, d /dt > q () δ ω e = q () δ ω e >, d /dt > ω e <, 3/6

d /dt < q q ω e >, i q î q [k] ω e <, i q î q[k] δ ff SPMSM q d/dt () d/dt δ v q = V a cos δ (6) δ = V a L sin δ =,... δ =, π [rad] (6) R SPMSM T (7) T = K mt ω e L V a sin δ (7) d/dt δ T δ(= ±π/ [rad]) q q (8) g δ ff g = [k ] k d [k ] = (A s k d A s) [k] (A sk d A s)[k] (B s k d B s ) T d [k] (B s k d B s ) T q [k] B s ω e K e T u V dc (8) k d : (k d > ) ω e > g d q δ (8) T d [k]= T max sin δ ff [k], T q[k]= T max cos δ ff [k] g/ δ ff = (9) g δ ff = (B s k d B s) T max cos δ ff [k] (B s k d B s ) T max sin δ ff [k] = (9) (9) (3) δ ff δ ff [k] = tan B sk d B s B s k d B s if ω e > & i q î q [k] tan B sk d B s B s k d B s elseif ω e < & i q î q[k] T ff [k] otherwise (3) k d k d δ q (3) k d k d = K I s ( F [k] T max) (3) Table. Inductance L Resistance R SPMSM Parameters of SPMSM.8 [mh].7 [mω] Pairs of poles P 4 Back EMF constant K e 73.8 [mv/(rad/s)] K I = 6 T u stin i d î d [k ] > i d î d [k] F [k ] T max F [k] > T max F [k ] = T max δ ff [k ] (3) 4. SPMSM T u =. [ms], V dc =36 [V] [rpm]. [Nm] 7 V a V a =.9V max dq ON T a, dq ON ()δ (3), (33) T a = T d T q (3) δ = tan T d T q (33) 7(c), 7(g), 7(k) T max FB FF FF q d q. [rpm] [Nm] V dc = 7 [V] V dcn 36 [V] V dcn /V dc 4/6

4..4.6.8. 4 (a) (Conventional)..4.6.8. 4 (e) (Conventional)..4.6.8. (i) (Proposed)..4.6.8. (b) (Conventional)..4.6.8. (f) (Conventional)..4.6.8. (j) (Proposed) 7 Fig. 7..8.6.4...4.6.8. (c) T a (Conventional).8.6.4...4.6.8. (g) T a (Conventional).8.6.4...4.6.8. Simulation results (k) T a (Proposed) Angle of Input [rad] Angle of Input [rad] Angle of Input [rad]..4.6.8. (d) δ (Conventional)..4.6.8. (h) δ (Conventional)..4.6.8. (l) δ (Proposed) θ =.9ω et u 8 d q FF d d q 6. FF SPMSM FB FB d, q FB FB H. Fujimoto, Y. Hori, and A. Kawamura: Perfect Tracking Control based on Multirate Feedforward Control with Generalized Sampling Periods, IEEE Trans. Ind. Eletron., Vol. 48, No. 3, pp. 636 644,. K. P. Gokhale, A. Kawamura, and R. G. Hoft: Deat beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis, IEEE Trans. Ind. Appl., Vol. 3, No. 3, pp. 9 9, 987. 3 T. Miyajima, H. Fujimoto, and M. Fujitsuna: Control Method for IPMSM Based on Perfect Tracking Control and PWM Hold Model in Overmodulation Range, IPEC-Sapporo, pp. 93-98,. 4 T. Miyajima, H. Fujimoto, and M. Fujitsuna: Control Method for IPMSM Based on PWM Hold Model in Overmodulation Range -Study on Robustness and Comparison with Anti-Windup Control-, IEE of Japan Technical Meeting Record, SPC--9, pp. 3 8, (in Japanese). J.-K. Seok, J.-S. Kim, and S.-K. Sul: Overmodulation Strategy for High-Performance Torque Control, IEEE Trans. Power Electronics, Vol. 3, No. 4, pp. 786 79, /6

4..4.6.8. (a) (Conventional) 4..4.6.8. (e) (Conventional) 4..4.6.8. (i) (Proposed)..4.6.8. (b) (Conventional)..4.6.8. (f) (Conventional)..4.6.8. (j) (Proposed) Fig. 8. 8.7.6..4.3....4.6.8. (c) T a (Conventional).7.6..4.3....4.6.8. (g) T a (Conventional).7.6..4.3....4.6.8. Experimental results (k) T a (Proposed) Phase of input [rad] Phase of input [rad] Phase of input [rad]..4.6.8. (d) δ (Conventional)..4.6.8. (h) δ (Conventional)..4.6.8. (l) δ (Proposed) 998. 6 B.-H. Bae and S.-K. Sul: A Novel Dynamic Overmodulation Strategy for Fast Torque Control of High- Saliency-Ratio AC Motor, IEEE Trans. Ind. Appl., Vol. 4, No. 4, pp. 3 9,. 7 S. Lerdudomsak, S. Doki, and S. Okuma: Novel Voltage Limiter for Fast Torque Response of IPMSM in Voltage Saturation Region, T.IEEJapan, Vol. 8-D, No., pp. 346 347, 8 (in Japanese). 8 K. Kondo, K. Matsuoka, Y. Nakazawa, and H. Shimizu: Torque feed-back control for salient pole permanent magnet synchronous motor at weakening flux control range, T.IEEJapan, Vol. 9-D, No., pp. 64, 999 (in Japanese). 9 T.-S. Kwon, G.-Y. Choi, M.-S. Kwak, and S.-K Sul : Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation, IEEE Trans. Ind. Appl., Vol. 44, NO. 6, pp. 7 73, 8. H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma: Development and Testing of the Torque Control for the Permanent-Magnet Synchronous Motor, IEEE Trans. Ind. Electron., Vol., No. 3, pp. 8 86, K. Ohi, K. Tobari, and Y. Iwaji: High Response Feild Weakening Control by Voltage Phase Operation, T.IEEJapan, Vol. 9-D, No. 9, pp. 866 873, 9 (in Japanese). K. Sakata and H. Fujimoto: Perfect Tracking Control of Servo Motor Based on Precise Model Considering Current Loop and PWM Hold, T.IEEJapan, Vol. 7-D, No. 6, pp. 87 93, 7 (in Japanese) 3 J. Kudo, T. Noguchi, M. Kawakami, and K. Sano: Mathematical Model Errors and Their Compensations of IPM Motor Control System, IEE of Japan Technical Meeting Record, IEE Japan, SPC-8-, pp. -3, 8 (in Japanese). 6/6