TP A.20 The effect of spin, speed, and cut angle on draw shots

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Section 9.2 Polar Equations and Graphs

Section 8.3 Trigonometric Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CE 530 Molecular Simulation

11.4 Graphing in Polar Coordinates Polar Symmetries

Solutions to Exercise Sheet 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometric Formula Sheet

Homework 8 Model Solution Section

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Second Order RLC Filters

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

EE512: Error Control Coding

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Graded Refractive-Index

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

Solar Neutrinos: Fluxes

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 7.6 Double and Half Angle Formulas

FERRITES FERRITES' NOTES RAW MATERIAL SPECIFICATION (RMS)

PhysicsAndMathsTutor.com

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Aluminum Electrolytic Capacitors (Large Can Type)

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Numerical Analysis FMN011

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

is like multiplying by the conversion factor of. Dividing by 2π gives you the

DuPont Suva 95 Refrigerant

Aluminum Electrolytic Capacitors

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Metal Oxide Varistors (MOV) Data Sheet

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

D Alembert s Solution to the Wave Equation

If we restrict the domain of y = sin x to [ π 2, π 2

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O


26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

SMC SERIES Subminiature Coaxial Connectors

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ALUMINUM ELECTROLYTIC CAPACITORS LKG

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

SMC SERIES Subminiature Coaxial Connectors

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Surface Mount Aluminum Electrolytic Capacitors

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Areas and Lengths in Polar Coordinates

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Approximate System Reliability Evaluation

Probability and Random Processes (Part II)

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

EE 570: Location and Navigation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Simon et al. Supplemental Data Page 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Calculating the propagation delay of coaxial cable

Two-mass Equivalent Link

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

Areas and Lengths in Polar Coordinates

Spherical Coordinates

SEN TRONIC AG A AB 93 :, C,! D 0 7 % : 3 A 5 93 :

Math 6 SL Probability Distributions Practice Test Mark Scheme

DuPont Suva 95 Refrigerant

Group 30. Contents.

Math221: HW# 1 solutions

Parametrized Surfaces

Galatia SIL Keyboard Information

Monolithic Crystal Filters (M.C.F.)

What happens when two or more waves overlap in a certain region of space at the same time?

10.7 Performance of Second-Order System (Unit Step Response)

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Mean-Variance Analysis

Shenzhen Lys Technology Co., Ltd

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

CONSULTING Engineering Calculation Sheet

Η ΙΣΤΟΡΊΑ ΤΟΥ 5 ΟΥ ΑΙΤΉΜΑΤΟς ΤΟΥ ΕΥΚΛΕΊΔΗ ΚΑΙ ΟΙ ΜΗ ΕΥΚΛΕΊΔΕΙΕς ΓΕΩΜΕΤΡΊΕς : ΈΝΑ ΔΙΔΑΚΤΙΚΌ ΠΕΊΡΑΜΑ ΣΕ ΜΑΘΗΤΈς Β ΛΥΚΕΊΟΥ

6.4 Superposition of Linear Plane Progressive Waves

SMD Power Inductor-VLH

Correction Table for an Alcoholometer Calibrated at 20 o C

Αναερόβια Φυσική Κατάσταση

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

PPA Metallized polypropylene film capacitor MKP - Snubber/pulse - High current

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Transcript:

technical proof TP A.2 The effect of pin, peed, and cut angle on draw hot technical proof upporting: The Illutrated Principle of Pool and Billiard http://billiard.colotate.edu by David G. Alciatore, PhD, PE ("Dr. Dave") originally poted: 11/8/5 lat reviion: 11/8/5 Refer to TP A.4 for the background derivation and illutration. ball geoetry: D := 2.25 in R := D 2 D =.57 R =.29 coefficient of friction between the cue ball and table cloth: µ := gravity g := g 2 g = 9.87 tie required for the cue ball to tart rolling (ceae liding): 2v t vω,, := in 7 µ g 2 R ω in( ) + + v in( ) co 2 velocity coponent when the cue ball tart rolling in a traight line: 5 v xf v, ω, := 1 := ( 2 2R ω) v yf v, ω, 7 v in 7 5v in co( )

the final deflected cue ball angle: := atan2( 5 v in( ) 2 2R ω, 5v in( ) co( ) ) θ c v, ω, x poition of the cue ball during the curved trajectory: := vt x c tv,, ω, in co( ) 2 co µ g t 2 co( ) 2 R ω in( ) + + v in( ) 2 x poition of the cue ball during and after the curved trajectory: := T t( vω,, ) if t T xtv,, ω, x c tv,, ω, + v xf ( v, ω, ) ( t T) otherwie x c Tv,, ω, y poition of the cue ball during the curved trajectory: := vt y c tv,, ω, 2 in µ g t 2 in 2 co R ω + v in( ) 2 R ω in( ) + + v in( ) 2 y poition of the cue ball during and after the curved trajectory: := T t( vω,, ) if t T ytv,, ω, y c tv,, ω, + v yf ( v, ω, ) ( t T) otherwie y c Tv,, ω, Equation for the tangent line: Equation for the ball (for cale): x tangent_line y tangent_line t, := t T 2 x ball ( t) R co t π := T 2 := x tangent_line t tan ( t) R in t π := T 2

Plot data: := := 1 in( ) f 3 v := 5 ph v ω roll := R f_range :=,.1.. 1. ( f) := ain( 1 f) cut angle for 1/2-ball hit average peed in ph converted to / average natural roll pin rate ball-hit fraction range cut angle and ball-hit fraction relationhip (fro TP 3.3) SRF_range :=,.5.. 1.25 T := 5 t :=,.1.. T pin rate factor range (fro TP A.12) nuber of econd to diplay.1 econd plotting increent variou peed (in ph, converted to /), fro low to very fat: v 1 := 2 ph v 2 := 4 ph v 3 := 6 ph v 4 := 8 ph natural roll follow hot (ee TP 3.3): 4 3 3 θ c v, ω roll, ( f_range ) 2 1.4.6.8 f_range

natural (revere natural roll) draw hot: 2 15 θ c v, ω roll, ( f_range ) 1 5 For a 1/2-ball hit: half := 3 θ c v, ω roll, half.4.6.8 f( half ) =.5 = 19.17 f_range Cut angle (and ball-hit fraction) required for the deflected cue ball direction to be perpendicular to the original (aiing line) direction: 9 := 3 initial gue (1/2-ball hit) Given (, ω roll, ) 9 = 9 θ c v 9 := Find 9 9 = 39.232 f( 9 ) =.368 Aount of draw (pin rate factor) required for perpendicular deflection at a 1/2-ball hit: 9 := SRF := 1 3 f( 9 ) =.5 initial gue (natural roll) Given θ c v, SRF ω roll, 9 SRF_TYP := = 9 Find( SRF) SRF_TYP =.625 Thi will be referred to a a "typical aount of pin for a draw hot." It i 62.5% of the natural roll rate.

variou peed 1/2 ball-hit draw hot with typical aount of pin: v 1 v 2 v 3 ω 1 := SRF_TYP ω R 2 := SRF_TYP ω R 3 := SRF_TYP R.4 (,, ω 2, ) (,, ω 3, ) ytv, 1, ω 1, ytv 2 ytv 3 y tangent_line ( t, ).4.4.6.8 xtv (, 2, ω 2, ) xtv, 1, ω 1,,, xtv, 3, ω 3,, x tangent_line, x ball

variou ball-hit fraction draw hot with typical aount of pin: θ c_biect := 18 ω := SRF_TYP ω roll Double biect draw hot aiing yte decribed in Jewett' October '95 BD article: 4 Triect aiing yte propoed here: θ c_alt := 18 3 2.5 θ c ( v, ω, ( f_range) ) θ c_biect ( ( f_range) ) θ c_alt ( ( f_range) ) 15 1 5 9.4.6.8 f_range 1/4-ball hit: 1 := (.25) 1 = 48.59 = 57.791 θ c v, ω, 1 θ c_biect 1 = 14.362 θ c_alt ( 1 ) = 34.229 1/2-ball hit: 2 := (.5) 2 = 3 3/4-ball hit: = 9 θ c v, ω, 2 3 := (.75) θ c_biect ( 2 ) = 6 3 = 14.478 θ c_alt ( 2 ) = 9 θ c v, ω, 3 7/8-ball hit: = 127.761 = 152.114 θ c v, ω, 4 4 := 7 8 θ c_biect ( 3 ) = 122.9 4 = 7.181 θ c_biect ( 4 ) = 151.277 θ c_alt ( 3 ) = 136.567 θ c_alt ( 4 ) = 158.458 The triec yte work fairly well over a wide range of cut angle (ball-hit fraction). The double biect yte i better for all cut angle (large ball-hit fraction). Both yte are poor for large cut angle (all ball-hit fraction), epecially the double biect ethod.

.4 (,, ω, ) 2 (,, ω, ) 3 ytv,, ω, 1 ytv ytv.4.4.6.8 xtv xtv,, ω, 1,,, ω, 2, xtv,, ω, 3, x ball

half-ball hit draw hot at variou pin rate: = 3 1/2-ball hit 12 θ c v, SRF_range ω roll, 1 8 6.4.6.8 1 1.2 SRF_range 75% of typical draw hot pin (25% le than typical): SRF 1 :=.75 SRF_TYP SRF 1 =.469 ω 1 := SRF 1 ω roll = 81.787 θ c v, ω 1, typical draw hot pin: SRF 2 := SRF_TYP SRF 2 =.625 ω 2 := SRF 2 ω roll = 9 θ c v, ω 2, 125% of typical draw hot pin (25% ore than typical): SRF 3 := 1.25 SRF_TYP SRF 3 =.781 ω 3 := SRF 3 ω roll = 98.213 θ c v, ω 3,

.4 (,, ω 2, ) (,, ω 3, ) ytv,, ω 1, ytv ytv y tangent_line ( t, ).4.4.6.8 xtv (,, ω 2, ) xtv,, ω 1,,, xtv,, ω 3,, x tangent_line, x ball