EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES

Σχετικά έγγραφα
On Quasi - f -Power Increasing Sequences

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

1. For each of the following power series, find the interval of convergence and the radius of convergence:


On Generating Relations of Some Triple. Hypergeometric Functions

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Example Sheet 3 Solutions

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

The Neutrix Product of the Distributions r. x λ

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Uniform Convergence of Fourier Series Michael Taylor

Fourier Series. Fourier Series

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

8. The Normalized Least-Squares Estimator with Exponential Forgetting

Homework for 1/27 Due 2/5

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings

Other Test Constructions: Likelihood Ratio & Bayes Tests

A study on generalized absolute summability factors for a triangular matrix

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions

Math221: HW# 1 solutions

Matrix Hartree-Fock Equations for a Closed Shell System

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

SOLVING CUBICS AND QUARTICS BY RADICALS

Presentation of complex number in Cartesian and polar coordinate system

Example 1: THE ELECTRIC DIPOLE

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

ST5224: Advanced Statistical Theory II

Analytical Expression for Hessian

C.S. 430 Assignment 6, Sample Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

17 Monotonicity Formula And Basic Consequences

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Second Order Partial Differential Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Ψηφιακή Επεξεργασία Εικόνας

Solution Series 9. i=1 x i and i=1 x i.

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

1 3D Helmholtz Equation

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

Homework 4.1 Solutions Math 5110/6830

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Every set of first-order formulas is equivalent to an independent set

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

derivation of the Laplacian from rectangular to spherical coordinates

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

The one-dimensional periodic Schrödinger equation

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

The Simply Typed Lambda Calculus

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Concrete Mathematics Exercises from 30 September 2016

A Note on Saigo s Fractional Integral Inequalities

5. Choice under Uncertainty

Tutorial Note - Week 09 - Solution

Chapter 15 Identifying Failure & Repair Distributions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Laplace s Equation in Spherical Polar Coördinates

On Inclusion Relation of Absolute Summability

Quadratic Expressions

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

The Heisenberg Uncertainty Principle

Matrices and Determinants

Chapter 2. Ordinals, well-founded relations.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Solutions to Exercise Sheet 5

Homomorphism of Intuitionistic Fuzzy Groups

Solutions: Homework 3

MA 342N Assignment 1 Due 24 February 2016

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 3 Solutions

physicsandmathstutor.com

Transcript:

Scieiae Mahemaicae Jaoicae Olie, Vol. 9, 3), 59 78 59 EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES KÔZÔ YABUTA Received Decembe 3, Absac. Le gf), Sf), gλ f) be he Lilewood-Paley g fucio, Lusi aea fucio, ad Lilewood-Paley gλ fucio of f, esecively. I 99 Che Jiecheg ad Wag Silei showed ha if, fo a BMO fucio f, oe of he above fucios is fiie fo a sigle oi i R, he i is fiie a.e. o R, ad BMO boudedess holds. Recely, Su Yogzhog exeded his esul o he case of Camaao saces i.e. Moey saces, BMO, ad Lischiz saces). We imove his gλ esul fuhe. His assumio is λ>3/. We show his is elaxed o λ>max, /) / α<), λ> α</), ad λ>α/ / α<). We also ea geealized Macikiewicz fucios µ ρ f), µ ρ S f) ad µ,ρ λ f).. Iocio I his oe we su he exisece ad boudedess oey of squae fucio oeaos, such as Lilewood-Paley s gλ -fucio ad Macikiewicz fucios, o Camaao saces. Fis, we ecall he defiiio of Lilewood-Paley s fucios geealized oes) i he -dimesioal Euclidea sace R. Defiiio. A coiuous fucio ψ o R is called a LP fucio, if hee exis osiive cosas C, C, δ, η ad γ such ha i) ψ L R ) ad R ψx) dx =; ii) ψx) C x ) δ ; iii) ψx h) ψx) C h γ x ) η fo h x /. Fom ii) ad iii) i follows iii ) R ψx h) ψx) dx h γ fo h R. I fac, we have ψx h) ψx) dx R x h ψx h) ψx) dx x < h ψx h) ψx) ) dx h γ x ) η dx C mi h, x ) δ dx) h γ. R R Fo a LP fucio we defie Lilewood-Paley s g ad Lusi s aea fucios as follows. Hee ad heeafe, f x) deoes fx/). ψ fx) ) gf)x) = d, ) d Sf)x) = ψ fy), Γx) Mahemaics Subjec Classificaio. 4B5. Key wods ad hases. Lilewood-Paley fucios, Macikiewicz fucio, aea fucio, Camaao sace, Moey sace, Lischiz sace, BMO.

6 Kôzô YABUTA whee Γx) ={, y) R ; x y <}. gλf)x) = R x y ) λ ψ fy) d whee λ>. L boudedess of hese oeaos ae kow like as he classical Lilewood- Paley s g-fucios. Tha is, g ad S ae L bouded fo <<, ad gλ is L bouded fo << if λ>max, ) see fo examle Tochisky [,. 39 38]). Hee ad heeafe, he lee C deoes a cosa deedig o mai aamees ad may vay a each occuece. Sei s geealizaio of he Macikiewicz fucio is as follows [8]: Le Ωx) bea fucio o R which saisfies he followig wo codiios: i) Ωx) is homogeeous of degee ad coiuous o he ui shee S, ad saisfies fo some <β Ωx ) Ωy ) C x y β, x,y S. ii) Ωx ) dσx ) =, whee dσ is he suface Lebesgue measue o S. S Defie µf)x) by ψ fx) ) µf)x) = d, whee ψx) = Ωx) x χ { x }. I hei wok o Macikiewicz iegal, A. Tochisky ad S. Wag [3] ioced he Macikiewicz fucios µ S f) ad µ λ f) coesodig o he S fucio ad g λ fucio. O he ohe had, i he coecio of µf) a aameized Macikiewicz fucio µ ρ f) was cosideed by L. Hömade [3]. I coesods o he case ψx) = Ωx) x ρ χ { x }. Thus, we have cosideed i [5] aameized µ ρ S f) ad µ,ρ λ f), whee ψx) = Ωx) x ρ χ { x }, fo ρ C wih Re ρ>. L boudedess fo hese oeaos ae well discussed i [7, 5], ad will be used i his ae. We ecall also he defiiio of Camaao saces [5]. Defiiio. Fo < ad / α, he Camaao sace E α, is defied by he se of fucios fo which / f E α, = su su fx) f x R B B α/ B dx) <, B B whee B moves ove all balls ceeed a x, ad f B is he aveage of f ove B,/ B ) B f) d. I is kow ha fo < α, E α, = Li α : he Baach sace of Lischiz coiuous fucios of exoe α, ad he oms ae equivale. If α =, E α, coicides wih BMO: he sace of fucios of bouded mea oscillaio. Ad if α <, E α, is equivale o he Moey sace L,α. I is also easily checked ha f α, C su B if a C B α/ B B fx) a dx ) / / α ), ad hece hese oms ae equivale. We oe ha balls ca be elaced by cubes wih sides aallel o he coodiae axes ad he oms ae equivale. I [7, 4] we have deced he boudedess fom he exisece of Macikiewicz fucios o a se of osiive measue. Recely, Su Yogzhog [] gives he followig esuls, exedig he BMO esuls by Wag ad Che [8]. )

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 6 Theoem. Le << ad / α<mi,δ,γ,η). If f E α, ad gf)x ) is fiie fo a oi x R, he gf)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha gf) E α, f E α,. Theoem. Le << ad / α<max mi,δ), miδ, γ, η)). If f E α, ad Sf)x ) is fiie fo a oi x R, he Sf)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha Sf) E α, f E α,. He shows he above esuls i he case ψx), x ) ψx) C x ) δ =, η = ad γ = ), bu i is easily see ha his esuls hold i he above cases. He also gives he coesodig esul fo g λ fucio. I his ae, we fuhe imove his esul o g λ as follows. Theoem 3. Le <<, / α<mi,δ) ad λ>λ, whee λ = max, /) / α<), λ = α</), ad λ =α/ / α<mi,δ,γ,η). If f E α, ad gλ f)x ) is fiie fo a oi x R, he gλ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha gλ f) E α, f E α,. Su s assumio is λ>3 see also Wag ad Che [8] i he case α = ). Ou esul also imoves he auho s oe i [4], he assumio was λ> i he case α<. As fo Macikiewicz fucios, we ca imove ou esuls i [5] as follows. Theoem 4. Le σ>, << ad / α<β. The, if f E α, ad µ ρ f)x ) is fiie fo a oi x R, he µ ρ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ ρ f) E α, f E α,. Theoem 5. Le σ>, max, σ ) <<, ad / α<max, miβ,σ)). The, if f E α, ad µ ρ S f)x ) is fiie fo a oi x R, he µ ρ S f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ ρ S f)x) E α, f E α,. Theoem 6. Le σ>, max, σ ) <<, λ>λ, ad / α<max, miβ,σ)). The, if f E α, ad µ,ρ λ f)x ) is fiie fo a oi x R, he µ,ρ λ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ,ρ λ f) E α, f E α,, whee λ = max, /) / α<), λ = α</), ad λ =α/ / α<). To ove he above heoems we use he followig wo key lemmas. Lemma. Le <. Ifδ> ad / α<mi,δ/), he hee exiss C> such ha fo ay ball B = Bx, ) ad ay f E α, R fy) f B y x ) δ α δ f E α,. This ca be oved easily by modifyig he oof of Lemma.3 i []. )

6 Kôzô YABUTA Lemma. Le α, β >. Suose ϕx) x ) α) ad ψx) x ) β). The, ϕ ψ x) C 3 x ) miα,β)) Poof. Sice ϕ ψ x) =ϕ ψ) x), we may assume =. Noe ha if y x x /, he y x /. So, we have ϕy)ψx y) y ) α) ψx y) Ad, y x x / y x x / y x x / x /) α) R ψx y) ψ x /) α). ϕy)ψx y) Hece, we obai he coclusio. y x x / ϕy) x y ) β) x /) β) R ϕy) ϕ x /) β). Fially i his secio, we meio some examles of LP fucios. Le P, x) =c x ) ad Qx) = P, x) =. The, Qx) is a LP fucio saisfyig he codiios i Defiiio wih δ =,η =,γ =. Le Rx) =Qx) cos x. The, Rx) isa LP fucio saisfyig he codiios i Defiiio wih δ =,η =,γ =.. Poof of Theoem 3 fo gλ -fucios Le ψx) be a LP fucio. Followig he ocee of he oof by Su, we use fis he followig: Lemma 3. Le λ>, < ad / α<. The hee exiss C> such ha fo ay ball B = Bx,), ay x B ad ay f E α, g λ, f )x)g λ,, f )x) α f E α,, whee f x) =fx) f 4B )χ 4B ad gλ, f )x) := ψ x u y)f y) ) ) λ d, R R gλ,, f )x) := ψ x u y)f y) ) λ d 8 R Poof. Sice ψ is bouded, we have ) gλ, f ψ )x) R R f y) ) ) λ d ψ fy) f 4B ) λ d 4B R α d f E α, ) ) ) α f E α,.

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 63 Now fo x B, y 4B ad 8, we have x u y x x x y 3 8, ad hece ψ x u y)f y) ) λ d 8 R ) fy) f 4B 8 4B x u y ) δ ) λ d δ ) fy) f 4B 8 4B δ ) λ d ) δλ d δ λ fy) f 4B 8 4B δλ δ λ α f E α, α f E α,. Nex usig Lemmas ad, we have Lemma 4. Le < ad / α<mi,δ). The hee exiss C> such ha fo ay ball B = Bx,), ay x B ad ay f E α, g λ, f 3)x) α f E α,, ovided λ> i he case α =ad λ>max, ) i he case α<, ad g λ,, f 3)x) α f E α,, ovided λ> i he case α<, whee f 3 x) =fx) f 4B )χ 4B) c, gλ,f 3 )x) := ψ x u y)f 3 y) R R gλ,,f 3 )x) := ψ x u y)f 3 y) 8 R ) ) λ d, ad ) λ d Poof. i) The case, λ> ad α<miδ, λ )/. By he Hölde iequaliy q = ) ad he Mikowski iequaliy / ), g λ,f 3 )x) ψ q ψ q ). ψ x u y) f 3 y) ) ) λ d R R ψ x u y) ) ) λ d f3 R R y) By Lemma we have ψ x u y) ) λ d R x y δ) δ) mi,λ) mi,λ) d x y ). ) mi δ),λ) d δ) mi,λ). δ) mi x y,λ)

64 Kôzô YABUTA We have used hee λ>.fo x x <ad x y > 4, we have x y 3 4 x y 4 x y ). Hece, by Lemma R gλ,f miδ, λ) fy) f 4B ) 3 )x) x y ) miδ, λ) miδ, λ) )/ α miδ, λ) )/ f E α, α f E α,. We have hee used α<miδ, λ )/. ii) The case <<, λ> ad α<. The coclusio i his case follows fom i) fo = ad he fac f E α, f E α, fo. iii) The case α =. I his case, i is kow ha E α, om is equivale o he usual BMO om fo evey <. Hece he coclusio follows fom i) fo =. iv) The case <α<. I his case, i is kow ha E α, om is equivale o he usual Lischiz om Li α fo evey <. So, fo y x > 4 we have fy) f 4B y x α 4) α ) f Liα y x α f Liα. Hece gλ,,f 3 )x) = ψ x u y)fy) f 4B ) 8 4B) c y x α ) f Liα y x >4 x u y ) δ y x α ) f Liα 4< y x < x u y ) δ < 8 < 8 y x y x α f Liα x u y ) δ ) ) λ d ) ) λ d ) λ d ) ) λ d. Fo, x B, y/ 4B, we have x y u x y x x x y x y, ad hece So, 4B) c I := y x α x u y ) δ α δ R y x >4 y x >4 C y x α y x /) δ δ y >4 y x α ) x u y ) δ ) λ δ d = C α δ y δ α = C δ α δ. ) λ d R ) λ δ d = C α δ δ = C α. Fo 8, x B ad y x we have x u y x y x x 4 y x, ad hece as above y x α ) I 3 := < 8 y x x u y ) δ ) λ d α.

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 65 Now ake b> so ha <b<λ )/. The y x α ) I := < 8 4< y x < x u y ) δ α ) < 8 4< y x < x u y ) b α < 8 4< y x < b x u y b = C α λ b dv d λ v b < 8 ) λ d ) λ d ) ) λ d v < = C α λ b λ b = C α. Thus, we have gλ,,f 3 )x) I I I 3 ) f Liα α f Liα B α f E α,. ) Lemma 5. Le < ad / α<mi,δ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig gλ, f 3)x ) <, i holds gλ, f 3)x) < fo ay x B ad gλ, f 3)x) gλ, f 3)x ) C α f E α, fo ay x B, ovided λ>max, ) i he case α<, λ>i he case α<, ad λ> α i he case α<miδ, γ, η), whee f 3x) =fx) f 4B )χ 4B) c. Poof. By seig v = x u we ge gλ, f 3 )x) = ψ v y)f 3 y) v x ) ) λ d. R R Hece, if we ca show I := ψ v y)f 3 y) v x ) λ v x ) ) λ d R R α f E α, fo x B, he we have by Mikowski s iequaliy gλ, f 3)x) I gλ, f 3)x ) α f E α, gλ, f 3)x ) < fo x B, ad gλ, f 3 )x) gλ, f 3 )x ) C α f E α, fo x B. So, we will esimae I. By he mea value heoem we have v x ) λ v x ) λ = x l x l ) x v ) λx θx x ) ) dθ x l l= x θx x ) v ) λ dθ

66 Kôzô YABUTA Hece I ψ v y)f 3 y) x θx x ) v ) ) λ dvddθ. R R i) The case, λ> ad α<miδ/, λ )). By Hölde s iequaliy / /q = ) we have ) ) ψ v y)f 3 y) q ψ v y) ψ v y) f 3 y) R R R ) = C ψ v y) f 3 y). R Hece by Mikowski s iequaliy I C ψ v y) x θx x ) v ) ) ) λ dvddθ f3 R R y). By Lemma we ge ψ v y) x θx x ) v ) λ dv R v y ) δ) x θx x ) v ) λ dv R x θx x ) y ) mi δ),λ). Fo y x > 4 ad x x <we have x θx x ) y y x x x > 3 4 y x. So, seig η = mi δ),λ ), we ge I y x ) ) ) η d fy) f4b. y x >4 Sice y x ) η d y x η y x η d d y x η = η y x y x η we have by usig Lemma [ I fy) f 4B y x η y x >4 ) y x, ) η fy) f 4B ) ] y x >4 y x [ α η )/ η α )/] f E α, α f E α,. we have used hee α</ ad α< η i.e. α< λ ) ad α< δ ). ii) The case <<, λ> ad α<. The coclusio i his case follows fom i) fo = ad he fac f E α, f E α, fo. iii) The case α =. I his case, i is kow ha E α, om is equivale o he usual BMO om fo evey <. Hece he coclusio follows fom i) fo =.

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 67 iv) The case <α< ad λ>. I his case, Eα, om is equivale o he usual Lischiz om Li α fo evey <. Hece, i he case <α< δ, he coclusio follows fom i) fo =. So, we ea he case <δ<. Puig u = x θx x ) v we ge I R R R ψ x θx x ) u y)f 3 y) ) λ ddθ R ) fy) f 4B 4B) c x u yθx x) ) δ ) λ ddθ y x α ) f Liα 4B) c x u yθx x) ) δ ) λ ddθ ) ) ). Fo, x B, y/ 4B, we have x y u θx x ) x y x x x y x y, ad hece akig δ > wih α <δ < mi, δ) we have 4B)c y x α x y uθx x) ) δ y x >4 δ y x α δ = C δ y x >4 y x α x y y >4 ) δ y α δ = C δ α δ. So, 4B) c y x α x y uθx x) δ α δ d ) λ α δ δ d ) ) δ ) λ d α δ δ d α δ δ α. Fo he iegal o >we oceed as follows fy) f 4B 4B) c x u yθx x) ) δ fy) fx u θx x )) fx u θx x )) fx u) 4B) c x u yθx x) ) δ 4B) c x u yθx x) ) δ fx u) f 4B 4B) c x u yθx x) ) δ

68 Kôzô YABUTA x u y θx x ) α f Liα 4B) c x u yθx x) ) δ C 4B) c x u yθx x) x u y θx x ) α f Liα R x u yθx x ) ) δ α f Liα x u yθx x ) R R 4B) c x x α f Li α x u yθx x) ) δ fx u) f 4B R α ) δ x u yθx x ) ) δ ) δ fx u) f 4B y α y ) δ Cα f Liα y ) fx u) f 4B R Now we ge α d > ) λ R Similaly we ge α d > ) λ α R Ad by chage of vaiable = s ad usig Lemma = ) we have fx u) f 4B d ) λ > > > δ ). R y ) δ ) λ α d α. fx u) f 4B d ) λ fx u) f 4B R ) λ d α. ds ) λs s fu) f 4B u x ) α f E α,. Alogehe, we have I α f Liα α f E α,. v) The case α<miδ, γ, η) ad λ> α. Sice by Mikowski s iequaliy we ge gλ, f 3)x) gλ, f 3)x ) ) ψ x u y) ψ x u y) f 3 y) ) ) λ d R R f Liα, ad sice f 3 y) = fy) f 4B χ 4B) c y x α f Liα, i suffices o show ) J := ψ x u y) ψ x u y) y x α R y 4B) c ) ) λ d f Liα α f E α,.

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 69 Fo ad y x > 4, we have x u y y x 3 4 y x 3 3 x x. So, fo we have by he assumio iii) fo ψ ad usig α<η ψ x u y) ψ x u y) y x α y 4B) c y 4B) c x x ) γ y x α ) γ R v α ) η v ) η dv α γ α γ. y x Fo >ad y x > 4 we have x u y y x 3 4 y x > 3 3 x x. So, like as above, we have fo > ψ x u y) ψ x u y) y x α γ α γ. y x >4 Ad fo he iegaio o 4 < y x 4, we have, usig he oey iii ) of ψ ψ x u y) ψ x u y) y x α 4< y x 4 α ψ x u y) ψ x u y) 4< y x 4 R α ψ x u y) ψ x u y) α x x ) γ γ γ α. Thus we have γ α γ γ α γ α γ γ ) ) d J ) λ > ) λ f Liα R γ α γ α γ γ ) ) d ) λ > ) λ f Liα γ d R R ) λ αγ α ) d ) λ α γ α f Liα We have used hee α<γad λ α > i.e. λ> α. γ α γ ) f Liα α f E α,. Lemma 6. Le λ>, < ad <α<mi,δ). The hee exiss C>such ha fo ay ball B = Bx,) ad ay f E α, saisfyig gλ,, f 3)x ) <, i holds gλ,, f 3)x) < fo ay x B ad gλ,, f 3)x) gλ,, f 3)x ) C α f E α, fo ay x B, whee f 3 x) =fx) f 4B )χ 4B) c ad gλ,, f 3)x) := ψ x u y)f 3 y) ) ) λ d. >8 R Poof. By seig v = x u we see gλ,, f 3 )x) = ψ v y)f 3 y) v x >8 R v x ) ) λ dvd.

7 Kôzô YABUTA Hece, fo x B we have gλ,, f 3 )x) v x >8 ψ v y)f 3 y) R ψ v y)f 3 y) R v x 9 v x ) ) λ dvd v x ) λ dvd ). We see by Lemma 4 is vaia elaced 8 by 9) ha he secod em i he igh-had side of he above iequaliy is bouded by C α f E α,. Hece, we have gλ,, f 3 )x) α f E α, gλ,, f 3 )x ) ψ v y)f 3 y) v x ) λ v x ) ) λ dvd v x >8 R = C α f E α, gλ,, f 3 )x )I, say. By he mea value heoem we ge I ψ v y)f 3 y) R x x v x θx x ) ) ) λ dvd dθ y x α ) f Li α v x >8 4B) c v y ) δ v x >8 v x θx x ) ) λ dvd ) dθ. We ake b> so ha b <λ. The oig α<δad v y y x x v y x fo y x v x, we have y x 4 y x α v y ) δ 4 y x < v x v y <3 v x y x α v y ) b v x α b v y b C y x v x y x v x y x α v y δ y x δ α ) δ b v x αb C δ v x α δ

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 7 Hece oig b <λ ad α<δwe have I v x αb λ b v x λ v x >8 λ b d >8 v x α δ ) v x λ λδ dvd f Liα λ α b λδ d >8 ) λ αδ f Liα λ b λαb λδ λα δ ) f Liα α f E α,. Thus, we have g λ,, f 3)x) g λ,, f 3)x )C α f E α, fo ay x B. Revesig he oles of g λ,, f 3)x ) ad g λ,, f 3)x), we have ad hece we have g λ,, f 3 )x ) g λ,, f 3 )x)c α f E α, fo ay x B, g λ,, f 3 )x) g λ,, f 3 )x ) C α f E α, fo ay x B, Poof of Theoem 3. We follow he idea by Kuz [4]. Le >ad B = Bx,). Se f = f 4B, f =f f 4B )χ 4B ad f 3 =f f 4B )χ 4B) c. The, f = f f f 3 ad gλ f )=. i) The case <α<. By assumio, gλ f)x ) <. So, we have gλ, f)x ) gλ,, f)x ) gλ f)x ) <. Usig Lemma 3 we have gλ, f 3)x )gλ,, f 3)x ) gλ, f)x )gλ,, f)x )gλ, f )x )gλ,, f )x ) <. Hece by Lemmas 4, 5 ad 6 we have fo x B gλf 3 )x) gλ,,f 3 )x)gλ,, f 3 )x)gλ, f 3 )x) 3C α f E α, gλ,, f 3)x )gλ, f 3)x ) <, ad gλ f 3)x) gλ f 3)x ) gλ,, f 3)x) gλ,, f 3)x ) gλ,, f 3)x) gλ,, f 3)x ) gλ, f 3 )x) gλ, f 3 )x ) 4C α f E α,. Usig L -boudedess of gλ we have g λ f ) L f L, ad fom his i follows ha gλ f )x) < fo almos all x B. Thus, we have gλ f)x) g λ f )x)gλ f 3)x) < fo almos all x B. Sice is abiay, we see ha gλ f)x) < fo almos all x R. Le E = {x R ; gλ f)x) < }. We have oly o show ha fo ay ball B = Bx,) wih cee x E, ) gλf)x) gλf)) B dx B α f E α,. B

7 Kôzô YABUTA Se f = f f f 3 as above. Noig gλ f ) = gλ, f ) = gλ, f) =, ad usig gλ f ) L f L B α f E α, ad he above iequaliy fo gλ f 3), we have B B gλ f)x) g λ f)) B dx gλ B f)x) g λ f 3)x ) dx B = gλ B f f 3 )x) gλ f 3)x)gλ f 3)x) gλ f 3)x ) dx B gλ B f )x) dx gλ B B f 3)x) gλ f 3)x ) dx B ) f x) dx C α f E α, α f E α,. B 4B ii) The case α. I his case, he oof is simle ha he case i). We have oly o use gλ, ad g λ,, Lemmas 3, 4 ad 5. So, we leave he deailed oof o he eade. This comlees he oof of Theoem 3. 3. Poofs of Theoems 4, 5 ad 6 We oceed as i he oof of Theoem 3. Fo a ball B = Bx,) ad a fucio f we se always f = f 4B, f =fy) f 4B )χ 4B ad f 3 =fy) f 4B )χ 4B) c. Lemma 7. Le Ω L S ), Ωx) dσx) =, S α<, ad ρ = σ iτ σ >,τ R). The, if f E α, ad µ ρ f)x ) < fo some x R, hee exiss C> such ha fo ay ball B = Bx,) µ ρ f )x ) µ ρ f)x ) Ω α f E α,). Poof. By assumio we have Ωy x ) ρ fy) ) d y x y x ρ µ ρ f)x ) <. Hece, fo some we ge Ωy x ) ρ fy) y x y x ρ µρ f)x ). Sice, i he above iegal, he iegaio domai is coaied i y x 4, we see, usig he cacellaio oey of Ω, ha he above iegal is equal o Ωy x ) y x y x ρ fy) f 4B)χ 4B. Hece Ωy x ) y x y x ρ fy) f 4B)χ 4B σ µ ρ f)x ). Thus fo >we have Ωy x ) y x y x ρ f y) Ωy x ) y x y x ρ f y) Ω fy) f 4B < y x <mi,4) y x σ σ µ ρ f)x )C Ω σα f E α,.

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 73 Theefoe we have µ ρ f )x )= ρ y x σ µ ρ f)x ) Ω α f E α,) Ωy x ) y x ρ f y) d d σ ) ) µ ρ f)x ) Ω α f E α,). As fo µ ρ S, f ) ad µ,ρ λ, f ) we have Lemma 8. Le Ω L S ), ρ = σ iτ σ >,τ R), max, σ ) <<, ad α<. The, fo ay f Eα,, ay ball B = Bx,) ad ay x R µ ρ S, f )x) = Ωu y)f y) u x ρ y u u y ρ ) d α f E α,. Lemma 9. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>. Suose α ad saisfiy a) max, σ ) << ad α< o b) < ad α<. The, fo ay f E α,, ay ball B = Bx,) ad ay x R ) µ,ρ λ, f )x) = Ωu y)f y) R ρ y u u y ρ ) λ d α u x f E α,. Sice we ca ove Lemmas 8 ad 9 i simila ways, we oly ove Lemma 9. R Poof. i) The case <σ<ad max, σ ) <<. Fis we see easily Ωu y)f y) < y u u y ρ Ω σ fy) f 4B ασ f E α,. y x 4 Hece Ωu y)f y) R ρ < y u u y ρ u x ) ) λ d ασ u x ) ) λ d f E σ α, So, we eed oly o show I := Sice > R σ ρ, we have σ) y u ασ Ωu y)f y) u y ρ σ d σ u x ) ) = σ σ) So, we ake = mi,) ad choose a eal umbe a so ha =, σ) >a> σ). ) f E α, α f E α,. ) ) λ d α f E α,. ) >. σ

74 Kôzô YABUTA The, oig < σ) a) <we have by Hölde s iequaliy Ωu y)f y) y u u y ρ ) ) f y) Ω y u u y σ) a) y u u y σ)a σ) a) y u f y) u y σ)a ). Hece by Mikowski s iequaliy ) ad by usig a σ) <we ge ) λ I σ) a) u x ) ) d f y) ) 4B y u u y σ)a σ ) σ) a) σ)a ii) The case σ. I his case we see easily µ,ρ λ, f )x) R R fy) f 4B 4B ) d σ σ) α f E α, σ α f E α,. ) σ σ Ω f y) y u u x u x ) ) λ d ) ) ) λ d fy) f 4B 4B α f E α, α f E α,. iii) The case α =. I his case E α, = BMO < ), ad he oms ae equivale. So, ake = i he above i) ad ii). iv) The case <α<. I his case E α, = Li α < ), ad he oms ae equivale. So, ake = i he above i) ad ii). As fo µ,ρ λ f ), we eed Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>, < ad α<. The, fo ay f Eα,, ay ball B = Bx,) ad ay x B µ,ρ λ,, f )x) = u x >8 ρ y u Ωu y)f y) u y ρ u x ) ) λ d =. Poof. Fo y x 4, y u ad x x, we have u x u y y x x x 6, ad hece he iegaio u-domai of he above iegal is emy. Nex we ivesigae µ ρ f 3 ), µ ρ S f 3) ad µ,ρ λ f 3). Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), < ad α<. The, fo ay f E α,, fo ay ball B = Bx,) ad ay x B µ ρ f 3)x) = Ωx y)f 3 y) ρ x y ρ ) d =, y x

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 75 ad µ ρ S, f 3)x) = u x ρ y u Ωu y)f 3 y) u y ρ ) d =. Poof. Fo x x ad x y, we have x y, ad hece he iegaio domai wih esec o y has o iesecio wih he suo of f 3 i he exessio of µ ρ f 3). So, we have µ ρ f 3) = fo x B. Fo x x, u x ad u y, we have x y x x x u u y 3, ad hece he iegaio domai wih esec o y has o iesecio wih he suo of f 3 i he exessio of µ ρ S, f 3). So, we have µ ρ S, f 3) = fo x B. Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>. Suose α, λ ad saisfiy a) max, σ ) <<, λ>max, ) ad α< o b) <, λ> α ad α<. The, fo ay f Eα,, fo ay ball B = Bx,) ad ay x B ) µ,ρ λ, f 3)x) = Ωu y)f 3 y) R ρ y u u y ρ ) λ d α u x f E α,. Poof. i) The case <σ<ad max, σ ) <<. Take ad a as i he oof of Lemma. The, by Hölde s iequaliy we have Ωu y)f 3 y) y u u y ρ ) ) f 3 y) Ω y u u y σ) a) y u u y σ)a ) σ) a) f 3 y). y u u y σ)a Hece usig Mikowski s iequaliy ) ad he oig u x y x y u x x > 4 y x ) fo u y, y x > 4 ad x x, we have µ,ρ λ, f 3)x) R y u ) f 3 y) u y σ)a u x ) ) λ σ) a) σ d ) χ y u ) 4B R u y σ)a u x ) f3 λ y) ) χ y u f 3 y) 4B R u y σ)a y x ) λ ) fy) f 4B 4B y x ) σ)a λ λ ) λ σ) σ α d λ ) f E α, We have used hee λ >, α< λ ) ad Lemma. ) σ) a) σ d ) ) λ σ) a) σ d σ) a) σ d ) λ ) α λ f E α, α f E α,.

76 Kôzô YABUTA ii) The case σ. I his case, we ake = mi,) ad a =. The he easoig i he se i) sill woks. iii) The case α =. I his case E α, = BMO < ), ad he oms ae equivale. So, ake = i he above i) ad ii). iv) The case <α<. I his case E α, = Li α < ), ad he oms ae equivale. So, akig = = i he above i) ad ii) ad oig λ> α imlies α< λ ), we have he desied iequaliy. Lemma 3. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>, < ad <α<. The, fo ay f E α,, fo ay ball B = Bx,) ad ay x B µ,ρ λ,, f 3)x) α f E α,, whee µ,ρ λ,, f 3)x) = u x 8 ad f 3 x) =fx) f 4B )χ 4B) c. ρ y u Ωu y)f 3 y) u y ρ u x ) ) λ d, Poof. I his case E α, = Li α < ), ad he oms ae equivale. So, fo y 4B) c we have f 3 y) = fy) f 4B fy) fx ) fx ) f 4B f Liα y x α α ) f Liα y x α. Fo x x, u y ad u x 8, we have y x y u u x x x, ad fo x x, u y ad x 4B) c we have u x y x u y x x > y x >. Hece we have µ,ρ λ,, f 3)x) Ω < u x 8 < u x 8 σ σ y u 4< y x y u α u y y x α u y σ σ α λ λ d λ λ d ) f Liα ) ) λ d f Liα ) f Liα α λ λ ) f Liα α f E α,. Now we eae hee moe lemmas. Lemma 4. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), <<, ad / α<β. The hee exiss C>such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ ρ f 3 )x ) <, i holds µ ρ f 3 )x) < fo ay x B ad µ ρ f 3 )x) µ ρ f 3 )x ) C α f E α, fo ay x B, whee f 3 x) =fx) f 4B )χ 4B) c. Lemma 5. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), max, σ ) < <, ad / α</ o / α<miβ,σ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ ρ S, f 3)x ) <, i holds µ ρ S, f 3)x) < fo ay x B ad µ ρ S, f 3)x) µ ρ S, f 3)x ) C α f E α, fo ay x B,

gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 77 whee f 3 x) =fx) f 4B )χ 4B) c. Lemma 6. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), max, σ ) < <, ad / α</ o / α<miβ,σ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ,ρ λ, f 3)x ) <, i holds µ,ρ λ, f 3)x) < fo ay x B ad µ,ρ λ, f 3)x) µ,ρ λ, f 3)x ) C α f E α, fo ay x B, ovided λ> i he case α<, λ> α i he case α< ad λ>max, ) i he case α<, whee f 3x) =fx) f 4B )χ 4B) c. We ca ove he above hee lemmas modifyig he oofs i he cube seig see, Ha [], Qiu [6], Yabua [4] ad Sakamoo ad Yabua [5]. We give hee a way o use he cube seig diecly i he case of Lemma 6. Le Q be a cube wih cee x ad side legh, Q be he cube wih cee x ad side legh 6. Le B be he ball wih cee x ad adius. Le f 3 x) =fx) f 4B )χ 4B) c ad f 4 x) =fx) f Q )χ Q ) c. The we have Lemma 7. Le Ω L S ) ad Ωx) dσx) =.Leρ = σ iτ σ >,τ R), S <, ad / α<. Le x, B, Q, Q, f 3 ad f 4 be as above. The, hee exiss C> such ha fo ay x B R ρ y u Ωu y) f 3 y) f 4 y) ) u y ρ u x ) ) λ d α f E α,. Poof. Le I be he lef had side of he above iequaliy i he saeme of Lemma 7. The by he assumio S Ωx) dσx) = we see ha I = Ωu y) fy) f Q ) χq χ 4B) c) R ρ y u u y ρ ) λ d u x Ω fy) f Q R σ ) ) λ d y u u y σ u x 4< y x <8 fy) f Q R σ ) ) λ d y u u y σ u x 4< y x <8 C fy) f Q σ ) ) λ d u y σ u x R y u 4< y x <8 =: I I. I α f E α, ca be oved i a way quie simila o he oof of Lemma, ad I α f E α, ca be oved i a way quie simila o he oof of Lemma 9. Usig his lemma, we ca use he coesodig esul o Lemma 6 i he cube seig. We oe hee ha i Sakamoo ad Yabua [7,. 37 4], hey eally oved µ,ρ λ, f 3)x) µ,ρ λ, f 3)x ) C α f E α, i he case α< ad λ> α. Poofs of Theoems 4, 5 ad 6. Usig Lemmas 7 6 ad L boudedess esuls i [7], we ca ove hese heoems i he same way as i he oof of Theoem 3, ad so we leave he deailed oofs o he eade. )

78 Kôzô YABUTA Refeeces [] E. B. Fabes, R. L. Johso ad U. Nei, Saces of hamoic fucios eeseable by Poisso iegals of fucios i BMO ad L,λ, Idiaa Uiv. Mah. J., 5 976), 59 7. [] Ha Yog sheg, O some oeies of s-fucio ad Macikiewicz iegals, Aca Sci. Nau. Uiv. Pekiesis, 5 987), 34. [3] L. Hömade, Taslaio ivaia oeaos, Aca Mah., 4 96), 93-39. [4] D. S. Kuz, Lilewood-Paley oeaos o BMO, Poc. Ame. Mah. Soc., 99 987), 657 666. [5] J. Peee, O he heoy of L,λ saces, J. Fuc. Aal., 4 969), 7 87. [6] Qiu Sigag, Boudedess of Lilewood-Paley oeaos ad Macikiewicz iegal o E α,, J. Mah. Res. Exosiio, 99), 4 5. [7] M. Sakamoo ad K. Yabua, Boudedess of Macikiewicz fucios, Sudia Mah., 35 999), 3 4 [8] E. M. Sei, O he fucios of Lilewood-Paley, Lusi, ad Macikiewicz, Tas. Ame. Mah. Soc., 88 958), 43 466. [9] E. M. Sei, Sigula iegals ad diffeeiabiliy oeies of fucios, Piceo Uiv. Pess, Piceo, N.J., 97. [] E. M. Sei ad G. Weiss, Iocio o Fouie Aalysis o Euclidea Saces, Piceo Uiv. Pess, Piceo, N.J., 97. [] Su Yogzhog, O he exisece ad boudedess of squae fucio oeaos o Camaao saces, ei. [] A. Tochisky, Real-Vaiable Mehods i Hamoic Aalysis, Academic Pess, Sa Diego, Calif., 986. [3] A. Tochisky ad Shili Wag, A oe o he Macikiewicz iegal, Colloq. Mah., 6/6 99), 35 43. [4] K. Yabua, Boudedess of Lilewood-Paley oeaos, Mah. Jaoica, 43 996), 43 5. [5] K. Yabua, Some emaks o Macikiewicz fucios, Kwasei Gakui Uiv. Na. Sci. Rev., 6 ), 9 5. [6] Wag Shili, Boudedess of he Lilewood-Paley g-fucio o Li α R )<α<), Illiois J. Mah., 33 989), 53 54. [7] Wag Silei, Some oeies of he Lilewood-Paley g-fucio, Coem. Mah., 4 985), 9. [8] Wag Silei ad Che Jiecheg, Some oes o squae fucio oeao, Aals of Mahemaics Chiese), Seies A, 99), 63 638. School of Sciece ad Techology, Kwasei Gakui Uivesiy Gakue - Sada, Hyogo 669-337, JAPAN e-mail: yabua@kwasei.ac.j