A Lagrange relaxation algorithm for capacitated lot-size problem(clsp) with minimum lot-size constraint

Σχετικά έγγραφα
Research on model of early2warning of enterprise crisis based on entropy

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Arbitrage Analysis of Futures Market with Frictions

Research on real-time inverse kinematics algorithms for 6R robots

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Probabilistic Approach to Robust Optimization

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Integrated, hierarchical and interactive approaches for the joint resolution of production lot-sizing and scheduling problems

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Motion analysis and simulation of a stratospheric airship

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο)

CorV CVAC. CorV TU317. 1

High order interpolation function for surface contact problem

A research on the influence of dummy activity on float in an AOA network and its amendments

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

A System Dynamics Model on Multiple2Echelon Control

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος Κώστας Δόσιος

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Applying Markov Decision Processes to Role-playing Game

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Buried Markov Model Pairwise

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

2002 Journal of Software

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Adaptive grouping difference variation wolf pack algorithm

Models for Asset Liability Management and Its Application of the Pension Funds Problem in Liaoning Province

Research on Economics and Management

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Multi-objective design of control chart for short-run production

DOI /J. 1SSN

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homomorphism in Intuitionistic Fuzzy Automata

Other Test Constructions: Likelihood Ratio & Bayes Tests

Monetary Policy Design in the Basic New Keynesian Model


Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Algorithms to solve Unit Commitment Problem

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Section 8.3 Trigonometric Equations

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

SYLLABUS CHAPTER - 1 : INTRODUCTION TO ALGORITHMS CHAPTER - 2 : DIVIDE AND CONQUER CHAPTER - 3 : GREEDY METHOD

Liner Shipping Hub Network Design in a Competitive Environment

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Study of urban housing development projects: The general planning of Alexandria City

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

CAP A CAP

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Math 6 SL Probability Distributions Practice Test Mark Scheme

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Approximation Expressions for the Temperature Integral

The Simply Typed Lambda Calculus

New bounds for spherical two-distance sets and equiangular lines

Partial Trace and Partial Transpose

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Accounts receivable LTV ratio optimization based on supply chain credit

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Congruence Classes of Invertible Matrices of Order 3 over F 2

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

A summation formula ramified with hypergeometric function and involving recurrence relation

Transcript:

26 2 2009 2 Control Theory & Applications Vol. 26 No. 2 Feb. 2009 : 1000 8152(2009)02 0133 06,,, (, 200240) :,., W-W(Wagner-Whitin). O(T 3 ).,,.,,.,. : ; ; ; : TP273 : A A Lagrange relaxation algorithm for capacitated lot-size problem(clsp) with minimum lot-size constraint PAN Chang-chun, YANG Gen-ke, SUN Kai, LU Heng-yun (Department of Automation, Shanghai Jiaotong Unviversity, Shanghai 200240 China) Abstract: A Lagrange relaxation heuristic-based procedure is presented to solve the capacitated lot-size problem(clsp) with minimum lot-size constraint. The problem is first decomposed into a series of sub-problems W-W(Wagner-Whitin) with dynamic economic minimum lot-size constraint. To deal with the sub-problems, an optimal forward iterative algorithm with runtime complexity of O(T 3 ) is proposed. The Lagrange dual problem is then handled by the sub-gradient optimization algorithm to obtain a tight lower bound. If the solution to the Lagrange dual problem is infeasible, the setup variables are fixed and the remaining problem is reformulated as a linear programming problem which can be solved efficiently by any off-the-shelf solver. Finally, the computational experiments demonstrate the algorithm s efficiency. Key words: CLSP; minimum lot-size; Lagrange relaxation; sub-gradient optimization 1 (Introduction) CLSP(capacitated lot-size problem),,,, [1] W-W,, [2,3]. [4 7],. [8] Lagrangean CLSP,. [9] NP-hard., CLSP NP-Hard.,, [10,11] (LP). [12] (GA) LP. [13]. [14] Lagrangean., [15] (ACO). [16],.,,.,,, : 2007 09 07; : 2008 07 04. : (60574063).

134 26.,,.,. CLSP,,, W-WO(T 3 ). 2 (Problem formulation) : t:, t = 1,, T ; j:, j = 1,, J. : d jt : t, j; m jt : t, j ; a j : j ; h jt : jt t + 1 ; s jt : jt ; p jt : jt ; r t : t. : X jt : t j; Y jt :, j t 1, 0; I jt : tj. (P): min J T +1 h j,t 1 I jt + T j=1 t=2 t=1 j=1 J (p jt X jt + s jt Y jt ) (1) s.t. I jt + X jt I j,t+1 = d jt, j, t, (2) J X jt a j r t, t, (3) j=1 X jt ( rt / aj ) Y jt, j, t, (4) X jt Y jt m jt, j, t, (5) X jt 0, I jt 0, Y jt {0, 1}, j, t, (6) I j1 = 0, j, t. (7) : (1), ; (2); (3) ; (4) ; (5) ; (6)(7),. (P) CLSP : i) (5) ; ii) I j,t +1 0. 3 Lagrangean (Lagrangean relaxation-based strategy) 3.1 Lagrangran (Lagrangean relaxation) Lagrangran β = [β 1, β 2,, β T ], β t 0, (3) Lagrangean (1), Lagrangean L(β)=min { J T +1 h j,t 1 I jt + j=1 t=2 J j=1 t=1 J j=1 t=1 s.t. (2)(4) (6). T X jt (p jt + β t a j ) + T s jt Y jt T } r t β t, (8) t=1 J X jt a j r t, β 0, L(β) j=1 (P). (P), Lagrangean : LD = max (L(β), β 0). (9) Lagrangean LD, Lagrangean β, Lagrangean L(β), Lagrangean,. L(β). L(β),, L(β)J, j : L j (β) = min{ T +1 h jt 1 I jt + T {(p jt + β t a j ) X jt + t=2 t=1 s jt δ(x jt ) } }, (10) s.t. I jt + X jt I j,t+1 = d jt, t, (11) X jt δ (X jt ) m jt, t, (12) X jt 0, I jt 0, t, I j1 = 0. (13) { 1, x > 0, δ(x) = 0,.. (11), L j (β) W-W., (9) (12) W-W (E-WW). 3.2 E-WW (The optimal forward plan policy) W-W (S-WW), :, I t X t = 0, t.

2 : 135, 0, I t + X t < k d τ, X t X [17] t. E-WW S-, I t + X t = WW, E-WW k d τ, X t = X t X t, k,, S-WW ( X [18,19]). t, : f = p k X t ;, t X t, I t, X t, : f + = t t. E-WW, : (p t + k 1 h τ ) X t. f > f +, 1 t d t m t, E-WWS-WW. S-WW E-WW, [1], S-WW X, t Xt = 0 k, t k T, Xt = k d i., i=t t, d t m t, X E-WW, E-WW. E-WW S-WW (E-WWS-WW, ). S-WW E-WW.. 2 E-WW, t, X t m t k, k t I t + X t = k d j. j=t. E-WW,, t X t, k, k > t, : k 1 d τ < I t + X t < k d τ, : p t + k 1 h r p k :, I t + X t > k 1 d τ, X t X t, I t + X t = max(m t + I t, k 1 d τ ). X t = X t X t,, X t k. t,, : f = X t (p t + k 1 h τ ); k, : f + = X t p k. f f +, f = f +,, I t + X t = max(m t + I t, k 1 d τ ), f > f +, ; p t + k 1 h r < p k :,,.. 1 E-WW, t, I t X t > 0, l, X l = m l, l < t, t. 2, : 1) X l 0; 2) k l I l +X l = k d j. I t X t > 0, X l + I l > t 1 X l + I l = X l + I l = k k j=l d τ, k {l,, t 1}, d τ, k {t,, T }, d τ,, 2,. 1 I t = 0,, (1,, t 1)(t,, T ). [1,17], E-WW. E-WW, : F (t): t ; ˆF (t): It+1 = 0 t, I t+1 = 0, ˆF (t) = ; F (t, l) : t, l l t, I l = 0, F (t) = min {F (t, l)}. (14) l {1,,t} l, 1,, {1,, l 1} {l,, t}. : F (t) = ˆF (t) = min {C(t, l) + ˆF (l 1)}, (15) l {1,,t} min {Ĉ(t, l) + ˆF (l 1)}. (16) l {1,,t} : C(t, l) {l,, t} ; Ĉ(t, l) I t+1 = 0 {l,, t}, I t+1 = 0

136 26, Ĉ(t, l) =. C(1, 1) = { s 1 + m 1 p 1 + h 1 (m 1 d 1 ), m 1 > d 1, s 1 + d 1 p 1, m 1 d 1, { +, m 1 > d 1, Ĉ(1, 1) = s 1 + d 1 p 1, m 1 d 1, ˆF (0) = 0. 3.3 (Algorithmic complexity analysis ) (15)(16), ˆF (t), l {1,, t} Ĉ(t, l), Ĉ(t, l), l, l,, (t l + 1),,,. τ, t X τ = max(m τ, d τ I τ ). Ĉ(t, l) τ= τ O(t), T ˆF (T ) O(T 3 ), F (T ) ˆF (T ). 3.4 Lagrangean (Subgradient optimization for the Lagrangean dual problem ), Lagrangean. Lagreagean [20]. : 1) Lagrangean ; 2)., Lagrangean β k+1 = max { 0, β k + λ k g k}. 3.5 (Procedure for feasibility ) Lagrangean,,. Lagrangean Y it,,. 4 (Computational experiments), E- WW, [1], 1. 12. 1 Table 1 E-WW Test data for E-WW 1 2 1 69 85 1 10 100 2 29 102 1 10 50 3 36 102 1 10 200 4 61 101 1 10 80 5 61 98 1 10 100 6 26 114 1 10 150 7 34 105 1 10 30 8 67 86 1 10 20 9 45 119 1 10 120 10 67 110 1 10 80 11 79 98 1 10 70 12 56 114 1 10 70 Table 2 2 Mode of generating the test data g k (T ) L(β) β k, : g k = [gt k ], gt k = J a j Xjt k r t. j=1 λ k k., : λ k = σ k ( Z u L(β k ) ) g k 2. : σ k (0, 2], Z u LD(β)., σ 1 = 1.8, Z u = 1.08 Z, Z., 20, σ k+1 = 0.8σ k, 100 ( [8]). : J = 500, T = 10 : J = 1000, T = 20 : J = 2000, T = 30 d jt U[100, 1000] h jt U[0, 1] p jt U[0, 1] s j U[50, 100] a j U[1, 5] m jt U[50, 500] P r t k t a j d jt j 1, ; 2,. 1, : X = [98, 0, 97, 0, 121, 0, 0, 112,

2 : 137 0, 67, 135, 0], : 864[1] ; 2, : X = [134, 0, 0, 80, 102, 0, 0, 112, 0, 80, 122, 0], : 906., E-WW S-WW. [21], 3,, 2. VC++, PentiumIV 2.8GHz, 1G PC, Lingo8.0. 3, 10, 3 4. Lagrangean,, Lagrangean β,, β.,,. 3 4, SOL LB Gap = 100% LB LB., 1%,,.,. 1 : k t = U[1, 1.5]; : k t = U[1.5, 2]. Table 3 3 Computational results with tight capacity J T Gap/% CPU /s 500 10 0.35 27.73 258 1000 20 0.23 85.92 569 2000 30 0.59 203.23 1325 0.39 105.63 Table 4 4 Computational results with loose capacity J T Gap/% CPU /s 500 10 0.03 18.64 185 1000 20 0.12 52.59 337 2000 30 0.08 156.73 682 0.076 75.88 1 Lagrangean,,,,.. 1 Lagrangean Fig. 1 Convergent curves of the Lagrangean dual problem under two circumstances of different capacity mode 4.1 (Conclusion),., CLSP. Lagrangean,..,,, CLSP,,,. (References): [1] WANGER H M, WHITIN T M. Dynamic version of the economic lot sizing model[j]. Management Science, 1958, 5(1): 89 96. [2] DREXL A, KIMMS A. Lot sizing and scheduling survey and extensions[j]. European Journal of Operational Research, 1997, 99(2): 221 235. [3] JENS R, DEGRAEVE Z. Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches[j]. European Journal of Operational Research, 2007, 177(5): 1855 1875. [4] BARANY I, VAN ROY T J, WOLSEY L A. Strong formulations for multi-item capacitated lotsizing[j]. Management Science, 1984, 30(12): 1255 1261. [5] EPPEN G D, MARTIN R K. Solving multi-item capacitated lotsizing problems using variable redefinition[j]. Operations Research, 1987, 35(3): 832 848. [6] WOLSEY A A. Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation[j]. Management Science, 2002, 48(12): 1587 1602. [7],. CLSP[J]. ( ), 2003, 24(1): 11 14. (GAO Zhen, TANG Lixin. Branch-and-Price algorithm for CLSP[J]. Journal of Northeastern University(Nat & Sci), 2003, 24(1): 11 14.) [8] DIABY M, BAHL H C, KARWAN M H, et al. A lagrangean relaxation approach for very-large-scale capacitated lot-sizing[j]. Management Science, 1992, 38(2): 1329 1340.

138 26 [9] LORIAN M, LENSTRA J K, RINNOOY A H G. Deterministic production planning: algorithms and complexity [J]. Management Science, 1980, 26(4): 669 679. [10] BRANDIMARTE A P, D ORAZIO S. LP-based heuristics for the capacitated lot-sizing problem: the interaction of model formulation and solution algorithm[j]. International Journal of Production Research, 2002, 40(2): 441 458. [11] NEWSON E F P. Multi-item lot size scheduling by heuristic part 1: with fixed resources[j]. Management Science, 1975, 21(10): 1186 1193. [12],,. [J]. ( ), 2004, 44(5): 605 608. (CHANG Jianfeng, ZHONG Yuexian, HAN Zandong. Optimal method of capacitated lot sizing planning in manufacturing systems[j]. Journal of TshingHua University(Sci & Tech), 2004, 44(5): 605 608.) [13],. Job-shop [J]., 2003, 18(5): 581 584. (ZHANG Xiaodong, YAN Hongsen. Integration optimization of production planning and scheduling for a kind of job-shop[j]. Control and Decision, 2003, 18(5): 581 584.) [14],,. CIMS [J]., 1999, 16(2): 213 216. (TANG Lixin, YANG Zihou, WANG Mengguang. A new algorithm of th CSLSP in CIMS[J]. Control Theory & Applications, 1999, 16(2): 213 216.) [15],,. [J]., 2007, 24(2): 243 248. (LIU Shixin, SONG Jianhai, ZHOU Shanchang. Model and algorithm for solving hot strip rolling batch planning problems[j]. Control Theory & Applications, 2007, 24(2): 243 248.) [16],,,. [J]., 2006, 23(5): 819 822. (DING Ran, LI Qiqiang, SUN Tongjing, et al. Expected value model of production schedule by considering robustness constraints[j]. Control Theory & Applications, 2006, 23(5): 819 822.) [17] ZABEL E. Some generalizations of an inventory planning horizon theorem[j]. Management Science, 1964,10(3): 465 471. [18] FEDERGRUEN A, TZUR M. A simple forward algorithm to solve general dynamic lot-sizing models with n periods in O(nlogn) and O(n) time[j]. Management Science, 1991, 37(1): 909 925. [19] WANGELMANS A, HOESEL S V, KOLEN A. Economic lot sizing: an O(nlogn) algorithm that runs in linear time in the wagner-whitin case[j]. Operations Research, 1992, 40(1): 145 156. [20] FISHER M L. The Lagrangean relaxation method for solving integer programming problems[j]. Management Science, 1981, 22(1): 1 18. [21] DE ARAUJOA S A, ARENALESB M N, CLARKC A R. Lot sizing and furnace scheduling in small foundries[j]. Computers & Operations Research, 2008, 35(1): 916 932. : (1979 ),,,, E-mail: pan cc@sjtu.edu.cn; (1963 ),,,, E-mail: gkyang@sjtu.edu.cn; (1979 ),,,, E-mail: sunkai@sjtu.edu.cn; (1982 ),,,, E-mail: luhy@sjtu.edu.cn.