Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Prey-Taxis Holling-Tanner

Congruence Classes of Invertible Matrices of Order 3 over F 2

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

D Alembert s Solution to the Wave Equation

Homomorphism in Intuitionistic Fuzzy Automata

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

On Inclusion Relation of Absolute Summability

Cyclic or elementary abelian Covers of K 4

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

On the Galois Group of Linear Difference-Differential Equations

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

High order interpolation function for surface contact problem

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Single-value extension property for anti-diagonal operator matrices and their square

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Second Order Partial Differential Equations

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A General Note on δ-quasi Monotone and Increasing Sequence

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Gradient Descent for Optimization Problems With Sparse Solutions

On a four-dimensional hyperbolic manifold with finite volume

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homomorphism of Intuitionistic Fuzzy Groups

A summation formula ramified with hypergeometric function and involving recurrence relation

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

( y) Partial Differential Equations

n=2 In the present paper, we introduce and investigate the following two more generalized

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

The k-bessel Function of the First Kind

The ε-pseudospectrum of a Matrix

Computing the Macdonald function for complex orders

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

The k-α-exponential Function

Homework 8 Model Solution Section

Homework 3 Solutions

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

X g 1990 g PSRB

CRASH COURSE IN PRECALCULUS

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Second Order RLC Filters

Lecture 13 - Root Space Decomposition II

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Applying Markov Decision Processes to Role-playing Game

DOI /J. 1SSN

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Statistical Inference I Locally most powerful tests

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

L p approach to free boundary problems of the Navier-Stokes equation

x xn w(x) = 0 ( n N)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ADVANCED STRUCTURAL MECHANICS

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

SPECIAL FUNCTIONS and POLYNOMIALS

Finite difference method for 2-D heat equation

Apì ton diakritì kôbo ston q ro tou Gauss

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Exercises to Statistics of Material Fatigue No. 5

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

f (x) 2e 5(x 1) 0, άρα η f

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET


Transcript:

Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R p L, R, A, K... [2 5] J = L, R, C, K, [12]. ε n f : (R n, 0) R, m n f : (R n, 0) (R, 0), ε n. ε n m n, m n = m k n. f, j k f(x) f x k Taylor k=1., k =, j f(x) f x Taylor. f ε n, f R N - u m, φ f + u = f φ, f + m f R, R R n. [2] [5]. 1.1 f m n ε p n, : (1) f R - ; (2) J(f) m n ; (3) ( f ) f 0, J(f) Jacobian f x 1,, f x n ε n. : 2015-01-22 : 2015-05-06 : (11501103). : (1977 ),,,, :.

468 Vol. 37, Sun Wilson [9]. [9], X x n -, I ε n n 1 x 1,, x n 1. f I 2, f + m I 2 f R X, f, R X R X,. 1.2 f I 2, f + m I 2 f R X m I J(f)., [7 8] R R N R I, R N R R X., R N, ; R R N, : f m n ε p n, f R N - m n ε p n T R N f, T R N f f. 2 ε n f : (R n, 0) R, m n f : (R n, 0) (R, 0), ε n. ε n m n, m n = m k n. f, j k f(x) f x k Taylor., k=1 k =, j f(x) f x Taylor. [6], Mather R = {h : (R n, 0) (R n, 0) }, f, g ε n R - h R, f h = g, h = (h 1, h 2,, h n ) T. h(0) = 0, h i (0) = 0, i = 1, 2,, n. h i (x) = n a ij (x)x j, x = (x 1, x 2,, x n ) T R n, a ij (x) ε n. h(x) = A[x] x, j=1 A(x) = (a ij (x)) n n. h x = 0 Jacobian J(h) x=0 = A[0], h, A[0]., f, g ε n R - A[x] ε n n n, A[0], f(a[x] x) = g(x). R = {A[x] A : (R n, 0) GL(R, n) }, R = {A[x] x A[x] R}. N R n n, R R ( [8]) N = I n, ( R N = {A[x] R A[x] N (A[x]) T = N, x (R n, 0)}, I r 0 0 I r, n = 2m N = R N = {A[x] x A[x] R N, x (R n, 0)}. ) ( ) 0 0 0 0 ( 0 I m I m 0, R N, Lorentz R. ), R N = Sp(2m, R). ε p n f : (R n, 0) R p, m n ε p n f : (R n, 0) (R p, 0). f m n ε p n, V (f) f ε n. y 1 f,, y p f ε p n., f

No. 3 : R N - R N - 469 (R n, 0), (R p, 0), V (f) n ε n V (R n ), p ε p V (R p ). tf : V (R n ) V (f) tf(x)(x) = Df(x)(X(x)), X V (R n ), x (R n, 0), ε n, Df f Jacobian ( [10]). 2.1 ( [7]) f g R N - A[x] x R N f(a[x] x) = g(x) ( f A = g). 1 R N f f R N, f g R N - f g R N -. 2.2 ( [7]) V N (R n ) = {A[x] A[x] ε n n n, A[x] N + N (A[x]) T = 0, x (R n, 0)}, V N (R n ) = {A[x] x A[x] V N (R n )}. 2.1 (Nakayama ) A ( 1), I A : α I, 1 + α A, M A -, N M A -. N + I M = M, N = M. 3 R N f f m n ε p n, R N f := {φ f φ R N } f R N. ε p n+1 γ, γ t (x) = γ(x, t), t, γ t ε p n. γ 0 = f γ t R N f, t, ψ t R N γ t = ψ t f, ψ t ψ : (x, t) ψ(x, t) = ψ t (x) (R n+1, 0) (R n, 0)., R N f, R k N jk f. 3.1 R k N = {jk φ φ R N }, V k N (Rn ) = {j k ϕ ϕ V N (R n )} (k 1), T e R k N e, T e R k N = V k N(R n ). R k Lie, RN k Rk, Lie Lie, RN k Lie. Rk N Rk N e T ern k, T e R k N = V k N(R n ) = V N (R n )/m k+1 n A[x] A[x] N + N (A[x]) T = 0. = {A[x] = (a ij (x)) n n a ij (x) J k (n, p)},, α : ( ε, ε) RN k, α(0) = I n, α(t) = A[t, x], dα(t) dt t=0 T e RN k, A[t, x] Rk N, A[t, x] N (A[t, x]) T = N. t, da[t,x] dt t=0 = A[0, x], A[0, x] V k N (Rn ). T e R k N V k N (Rn ). Ȧ[0, x] N + N ( A[0, x]) T = 0,

470 Vol. 37, A[x] V k N (Rn ), A[x] N + N (A[x]) T = 0. ε > 0, α : ( ε, ε) GL(R, n), α(t) = exp(ta), α(t) N α(t) T = exp(ta) N (exp(ta)) T = exp(ta) N (exp(ta T )) = exp(ta) (exp( ta)) N = exp((t t)a) N = N, A[x] N + N (A[x]) T = 0. α(t) RN k, T e RN k V N k(rn ). T e RN k = V N k(rn ). 2 T e R k N = V k N (Rn ). 3.1 ( [11]) G M, M. 3.2 f m n ε p n, k (k 1), R k N := {jk φ φ R N }, J k (n, p) := {j k f f ε p n}, R k N jk f j k f T jk fr k N j k f = tf(v N (R n ))/m k+1 n. R k N Lie, Rk N J k (n, p). j k f J k (n, p), R k N jk f j k f R k N, 3.1 Rk N jk f J k (n, p). R k N jk f j k f. R k N RN k T ern k = V N k(rn ) = {A[x] x A[x] VN k(rn )}. exp : T e RN k, T j fr k k N j k f = { d dt jk (f(exp(t(a[x] x)))) A[x] T e RN k = VN(R k n )}, t=0 A[x] x V k N (Rn ), 2, exp(t(a[x] x)) = g t R k N, d dt jk (f(exp(t(a[x] x)))) t=0 = j k ( d dt (f g t)(x) ) t=0 = j k (Df(x)(A[x] x)) tf(v N (R n ))/m k+1 n. 3.1 f m n ε p n, R N f f T R N f : T R N f = tf(v N (R n )). 3.2,. 4 R N - R N, R N -.

No. 3 : R N - R N - 471 4.1 f m n ε p n, f R N -, g m n ε p n j f(0) = j g(0), f g R N -. 4.1 f m n ε p n, f R N - m n ε p n T R N f. ( ) f R N -. u m n ε p n. F (t, x) = f(x) + tu(x), t R F t (x) := F (t, x)., F t (x) R N f. F 0 (x) = f(x), df dt t=0 = u(x) T R N f. m n ε p n T R N f., [0, 1], g m n ε p n j f(0) = j g(0), F : (R R n, 0) R p F (t, x) = f(x) + t(g(x) f(x)), F t (x) := F (t, x). g R N - f. t, F t (x) R N - F t0 (x). F t0 (x) f(x) = (g(x) f(x)) g f m n ε p n+1, T R N F t0 T R N f, ( ), T R N f T R N F t0 + m n (T R N f), Nakayama,, T R N F t0 = T R N f. Ft = g(x) f(x) m n ε p n T R N f = T R N F t = tf t (V N (R n )),, ξ V N (R n ) ξ = n ξ i x i i=1 F t = tf t(ξ), F t(x) DF t (x)(ξ(x)) = 0, ( ) = (ξ 1,, ξ n ) = A[x] x, A[x] ε n n n, A[x] N +N (A[x]) T = 0, x (R n, 0), ( ) { dx 0 dt = 1, dx i dt = ξ i. Ãt(x) Ã ξ Ã t0 (x) = x, Ãt = A[Ã t (x)] Ã t (x). Ã 1 t (x) = A[x] x.

472 Vol. 37 A[x] ε n n n, h t (x). Ãt(x) = A[h t (x)] à t (x). ( [1]), à t (x) = e A[hs(x)]ds à t0 (x) = e A[hs(x)]ds x = lim µ 0 k=1 n e A[ht k (x)] tk x, µ [, t] t 1 t n, t k = t k t k 1. à t à t (x) = à t [x] x, à t [x] = t e A[hs(x)]ds. e A[ht k (x)] t k = n=0 e A[ht k (x)] tk N = N A[h t (x)] N + N (A[h t (x)]) T = 0, 1 ((A[h n! t k (x)]) t k ) n, 1 n! (( A[h t k (x)]) T t k ) n = N e (A[ht k (x)]) n=0 e A[hs(x)]ds N = N, à t [x] = t e A[hs(x)]ds, e (A[hs(x)]) T ds. T t k, à t [x] = A[h t (x)] à t [x] ( [1]) à t [x] (à 1 t [x]) T à 1 t [x] = A[h t (x)] à t [x] (à t [x]) T = (A[h t (x)]) T. 1 Ãt [x] = A[h t (x)] (à 1 t [x]) T = e (A[hs(x)]) T ds (à 1 [x]) T = à t [x] N = N (à 1 t [x]) T. à t [x] N (à t [x]) T = N. à t [x] R N. e (A[hs(x)]) T ds F t à t = F t à t + tf t à t = ( F t + tf t à t à 1 t ) à t = ( F t tf t(ξ)) à t = 0, d(ft Ãt) = 0. t, F t à t = F t0. [0, 1], [0, 1]., F t à t = F t0. [0, 1], F 1 à 1 = F 0, g à 1 = f, g R N - f.

No. 3 : R N - R N - 473 [1] John D D, Charles N F. Product integration with application to differential equation[m]. Boston: Addison Wesley Publ. Comp., 1979. [2] Wilson L C. Infinitely determined map-germs[j]. Can. J. Math., 1981, 33(3): 671 684. [3] Wilson L C. Map-germs infinitely determined with respect to right-left equivalence[j]. Pacific J. Math., 1982, 102(1): 235 245. [4] Broderesen H. A note of infinite determinacy of smooth map-germs[j]. Bull. London Math. Soc., 1981, 13: 397 402. [5] Wall C T C. Finite determinacy of smooth map-germs[j]. Bull. London Math. Soc., 1981, 13: 481 539. [6] Mather J N. Stability of C mappings iii: Finitely determined map-germ[j]. Pulb. Math. IHES., 1969, 35: 127 156. [7]. A K [J]., 1999, 19(2): 437 444. [8] Liu Hengxing. Finite indeterminacy of homogeneous polynomial germs under some subgroups R Ir of R[J]. Wuhan Univ. J. Nat. Sci., 2005, 10(5): 803 807. [9] Sun B H, Wilson L C. Determinacy of smooth germs with real isolated line singularities[j]. Proceed. Amer. Math. Soc., 2001, 129(9): 2789 2797. [10]. [M]. :, 2002. [11] Dimca A. Topics on real and complex singularities[m]. Braunschweig, Wiesbaden: Friedr. Vieweg Sohn, Adv. Lect. Math. Vieweg, 1987. [12] Zhang Guobin, Liu Hengxing. The infinite determinacy of function germs with parameters[j]. J. Math., 2005(3): 275 277. THE INFINITE DETERMINACY AND TANGENT SPACE TO THE ORBIT OF SMOOTH MAP-GERMS UNDER THE ACTION OF R N SU Dan 1, LIU Heng-xing 2 (1.School of Statistics, University of International Business and Economics, Beijing 100029, China) (2.School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China) Abstract: In this paper, the tangent space to the orbit of smooth map-germs under the action of R N is investigated. By produce integral theory, the infinite determinacy of smooth map-germs relative to a subgroup R N of right equivalent group is obtained, and the necessary and sufficient conditions for a smooth map-germ to be finitely R N -determined are extended. Keywords: map-germs; infinite determinacy; R N subgroup; tangent space 2010 MR Subject Classification: 58K40