The Improvement of Cake Filtration Rate using CO 2

Σχετικά έγγραφα
Modeling and Simulation of Drying Cylinders in Paper Processes

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

High order interpolation function for surface contact problem

Influence of Flow Rate on Nitrate Removal in Flow Process

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté


RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet


DuPont Suva 95 Refrigerant

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Conductivity Logging for Thermal Spring Well

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Buried Markov Model Pairwise

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Design Method of Ball Mill by Discrete Element Method

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

A 1 A 2 A 3 B 1 B 2 B 3

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

DuPont Suva 95 Refrigerant

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Το άτομο του Υδρογόνου

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

STEAM TABLES. Mollier Diagram

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

➂ 6 P 3 ➀ 94 q ❸ ❸ q ❼ q ❿ P ❿ ➅ ➅ 3 ➁ ➅ 3 ➅ ❾ ❶ P 4 ➀ q ❺ q ❸ ❸ ➄ ❾➃ ❼ 2 ❿ ❹ 5➒ 3 ➀ 96 q ➀ 3 2 ❾ 2 ❼ ❸ ➄3 q ❸ ➆ q s 3 ➀ 94 q ➂ P ❺ 10 5 ➊ ➋➃ ❸ ❾ 3➃ ❼

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ER-Tree (Extended R*-Tree)

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Multi-GPU numerical simulation of electromagnetic waves

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Noburo H ARAGUCHI*, Yusuke A RAKAWA*, Akihiro T ANAKA*, Takashi K USABA*, Ken-ichi Y AKUSHIDO* and Ichiro Y AMADA*

Quick algorithm f or computing core attribute

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Applying Markov Decision Processes to Role-playing Game

Ανταλλακτικά για Laptop Lenovo

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή διατριβή

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Couplage dans les applications interactives de grande taille

Changes in Chemical Properties and Water-percolation of Soils Overlaid with Cattle Manure Compost

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

; +302 ; +313; +320,.

Supporting Information

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

,,, (, ) , ;,,, ; -

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Φυσικοθεραπευτής, MSc, Εργαστηριακός συνεργάτης, Τμήμα Φυσικοθεραπείας, ΑΤΕΙ Λαμίας Φυσικοθεραπευτής

Anisotropy of Drainable Macropores in Andosols and Alluvial Soils

Development of a basic motion analysis system using a sensor KINECT

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Answers to practice exercises

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

m i N 1 F i = j i F ij + F x

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Metallurgical Analysis. qu) 2 BPB, 1 Table 1 Spectrophotometric determination of copper. / 10 4 (L mol - 1 cm - 1 )

By R.L. Snyder (Revised March 24, 2005)

CorV CVAC. CorV TU317. 1

2. Chemical Thermodynamics and Energetics - I

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Journal of the Institute of Science and Engineering. Chuo University

Transcript:

Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 468-475 m ( ) i m m i m m Ç i p 402-751 p}e n 253 (2006 3o 6p r, 2006 6o 26p }ˆ) The Improvement of Cake Filtration Rate using Gas Saturation Sung Sam Yim Gand Yun Min Song Department of Environmental Engineering, Inha University, 253, Yonghyun-dong, Nam-gu, Inchon 402-751, Korea (ReceivedG6 March 2006; accepted 26 June 2006) k h k p p l p l l k p v l p eˆv. p n p k p l ~ mp p p e dense skin(, Ã Ã)p l p p p n p. er k p p p l l l eˆ o p ll. l l l kp l sq rl d e nkl k p d k p l ~ ˆ l l qp p, p p l l e ˆ p l l m. Abstract For the filtration of super compactible cake, the high filtration pressure can not improve filtration rate. As the high pressure, in this case, decreases the cake porosity adjacent to filter medium and thus forms 'dense skin' which decreases the rate of liquid flow in a great extent. Actually, there was no method to improve filtration rate for the filtration with super compactible cake. We propose the saturation of gas into the suspension before the filtration operation for improving the filtration rate. The dissolved gas transforms itself into gas phase in the dense skin through which the pressure changes dramatically. The gas secures its space inside the dense skin, and finally forms the flow passages which improve the filtration rate. Key words: Cake Filtration, Compressible Cake Filtration, Dense Skin, Filtration with Gas Saturated Suspension 1. p l p p 50l p rp p l. 1953 Tiller l p p k l p l p p l p p eq [1]. p p p k n l Tiller 1962 l p p mp [2], p p 1973 l k p n p p p l p l dense skin(, Ã Ã)p p rk m [3]. p p l p (floc)l m p n k p p p l p n l ~m r p l p q p q eˆv k p. p p vp p p p v [4]. ~w, p v kp p kv To whom correspondence should be addressed. E-mail: yimsungsam@inha.ac.kr sq v kp, p p r~p 5~10Í r v. w, l k p v eˆ p r v. l ~l r p v. w, p k l p v p p p l p r~p r p v. w, k p v l p v ˆ v k. w, k p v l p m p p p n kp p k l p l p qp p v k. rp k p n p l l p k l l vv kp, p p p v v k. r p k p v p l p l l l k p p k l p l l v, pp r p p lp p. q v p k p vp l l l vveˆ o on p re v p erp. l l p p rp l e rp p 468

kl r p e m. l q ˆkl d tp l eˆ l eq. lkp p ns d p p l k pl p ~ ˆ r l p r p kp l qp p e p p p. l l p ˆkl d tpl p p p l m p p sq k p p p l eˆ o n p re p v p q m. d n p v d 3.3 p kp l k keˆ p ~ p. l l n p kp l r p kp k. 1 m 3 p ˆkp } o dp kp 1 kl 23 mol p dp kp k 33 mol q., n dp. k p p l l eˆ o l sr n, p v p l sr ~ lk l r p p eˆ p p m r k v ep [5]. p n l srp ~ p l vp l l r p p p p l. l sr k p vp r~ l v eˆ l vp p. 2. m 2-1. Ruthm i m m i m p l (cake filtration), l sqp l ~ l pq p p l p v l. p p l p l l Darcyp e[6]p (1)ep n. dv ------ = q = dt p ---------------- c µα av W l V l o r lkp (m 3 /m 2 )p, t l e (s), q lkp ˆ (m/s), p c p ky p k p p(pa), µ lkp r (kg/ms), α av p r (m/ kg), W l o r p p v (kg/m 2 )p. p ep Darcy[6] e mr p v kp p p l pp l l Darcyp ep. p (1)ep l l rn r~k pm l ~p r R m p n l pp e (2). p ˆ ( ) dl p p l p 469 (1) p lp p. ρs W = --------------------- V 1 S S c l ρ lkp p, S ˆkl p ~ v, S c p p ~ v p. p ep o lk o p p v p C rp, W = CV, k p ep. C W ---- ρs = = --------------------- V 1 S S c l v k lkp ρ n p l p C ˆkp ~ v Sm p p ~ v S cl p r. p (2)el p Ruthp ep (5)ep. dv ------ dt p = ------------------------------------ µ ( α av CV+ R m ) p (5)ep lp r, pp ep. dt ------ dv t G ------- = --------------- V + ------ µ R (6) V m p p µα av C (6)el p l r p p p. l e p l l e l lkp r r l p t / V, p V p l. pv l l t r n n k e v p ˆ. p Fig. 1l ˆ l. (6)el p Fig. 1p v n b µα av C/ p ˆ. l e l n bm r (µ), C l k p n l l r α av p p. l e l p r~p r p r p r p r v rp tp k. pr p v vr r p pp 2-2rl p. Fig. 1l p l r r p p 80 l ~ lp n p. Yim[7]p l v rl l kl (3) (4) (5) dv ------ dt p = ------------------------------------ µ ( α av W + R m ) l eq l l ~ ol p v k kp (2)el o r p p v W sq v k. p p l l ~ lkl l p pq p l ~ ol p. o r p p v p o v v ˆ, ˆk r~p v p p p v lkp v p, k (2) Fig. 1. Typical result of filtration experiment. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006

470 p Ë l rp pl nl p p n l p. (6)ep v p Fig. 1p e nlq l y r p. v, r p µr m / pl lkp r m l k p n l R m p p. p 80 p n pp Yim [8, 9]p p l rrp re p m. 2-2. m m (constitute equation of cake) p p vp k o k -Œ q (compression-permeability cell; CPC) e (7)e (8)ep. CPC p p pql vr p ~ k k (p s )p tl e p, p p v p e p p r. p s l kt qp k~k p p Œ e r Œ o l p p r (α)p. α = ap s n β 1 ε = Bp s p el ε[ ]p CPC l p p p p, α[m/kg] p εp v p p r (specific resistance)p. p s p p pq ~ k k (solid compressive pressure)p. l p s l α r l log-log l v p ˆ. v p r n l p ep am n p l. p p ~ k k p e l Bm βp p p. Tillerm Shirato ˆk r p p ~ k k (p s, solid compressive pressure)p m(µ)p mp, e (7) (8)p np 1p n k p p p r p o vr n v m [10, 11]. p n r p pp p p p o n e(tiller[10], Shirato [11])p lk. Yim [12]p ˆk r p p ~ k k p mp k ~ w pq p p l ~ k k (solid compressive pressure of the first solid layer, p f ) p r r~ k ol l p e p rne. pl ep p k [12]l Š m. 2-3. h} m j h} m k p CPC e l p p p vp ˆ tp p (7)ep np rp. k p ˆ n, p k l p r vr v k. 1950 m 1960 l t n p 0.5 p p p p l m. Tillerm Horng[13]p 1983 np l k p r e, p e 2002 l Tillerm Li[14]l p k r l. rl k p compressibility m p, p l compactibility mp, p Table 1l ˆ l. Table 1l ˆ m p, np 0p p pq p vp k p l r p k l p o44 o5 2006 10k (7) (8) Table 1. Classification of cake compactibility n n = 0 n 0.4 ~ 0.7 n 0.7 ~ 0.8 n >1 Description Incompressible Moderately compactible Highly compactible Super compactible r. p mr ~ pqp l l ˆ, l k p lt (6)el p l p p l v. Tiller p l e l t n rp k v carbonyl ironp p. p vp k n p 0.005 r l [13]. np 0.4l 0.7p o v t r p k v kaolin flat D pp, np 0.4p [14]. np 1 k v d v pp, n p 1.4 r p [14]. kl n n k p n vp np 1 p p p k vp. np 1 p p l r p k p v eˆ v l p k l l v v k p p p ˆ. p p nk, k p l k p v e p l l e p wkv v, l v vp p., k p k p v e l p p p p. 2-4. k h} m m i m ~(dense skin) kl l m p n k p p l p l l k p v e l vv k. p l p t l ~m r p p p kt kp p l p q p q eˆv k (dense skin)p l p p. p l r~ k p 95~99Í p lv, p l o t k p p l l p p [3]. Tiller vp k vl p l p l, p p rp mp e p pv ll. Yim Ben-Aim[15]p k p p pv p l e p, p 10l p kp p l p r l, p sql e rp p p. v, ˆk p p p p 80Í v p p v k, p 0.97 p p v ˆ, l ~m r p p p 0.6 r p p p lr e rp ll. 3. m s 3-1. i m l n Fig. 2m p l k p rq m. p n l ˆkp op, k p l l eq m. k p p o d l n pl n, pq r }o. p n m l n p l pq r }o. k p pq r lp n l. l v, l n l l ~

Fig. 2. Schematic diagram of pressure filtration apparatus and gas saturation. lk p pq r l l. p n q o p po p k p ~ l ˆkl l l l m p o pl. er p q l ˆkp l l ˆkl l pq p, p p l pq r l -Œ e l on n l. 3-2. l m d tp o d m, d l jar-testerp ˆk v e l l d tp m. p dp n p o l e l p q m. dp tp p sr o e p t l o m. pvp s, p d v k e l e. 3-3. i z, mso l ~ Advantec ³ À ²É (p )l rs Advantec Toyo 5Am dp Sartorius l rs v 5 µm l p n m. pv p bentonite pq ˆkp rs pv l n m. p Š p volclay American Colloid Company r p, ˆkp coulter counter r, 19.3 µm p 33.4Í, 12.1 µm p 52.9Í, 7.63 µm p 72.3Í, 4.81 µm p 85.3Í ˆ. pvr (t)pk l rs kpm q pvr YCX- 452m kpm pvr Cyanamid Superfolc(Superfloc) C 581p n m. pvr YCX-452p q p 6 10 6 ~9 10 g/mol ~ 6 plp, pvr SC-581p q p 10 5 ~10 g/mol k (³ )pl 6. 2 L pƒl pqr p kpm q pvr kj l p pvr YCX-452p 0.1Í p nkp rs m. mr p l p l k 4 o C q l e l n m. p ˆ ( ) dl p p l p 471 4. y 4-1. mš m i 4-1-1. d n l m n v kp l p Š p 4 gp 500 ml pqr l l 30 k 250 rpm p l ˆkp rs m. p ˆkl 1Í kpm q pvr(sc-581) 10 ml ~ l, 4 10 m l p e. m p e m e p r. p p 7 reˆ r p 190~200 ml l. p r p l l l eq m. d eˆ l kl l p d tp l kl eˆ l e p m. Fig. 3l d tp v kkp m d e p, l k 1 kl p e ˆ l. Fig. 3p d tp v kp r rp l e p, p l kl d eˆ l e p p. d tp v k kp p n 25.9 s/cm 2pl, d lp p l n p tp v kkp p n p k p 11 s/cm 2 pl. p p (6)el p l l r, α av, d v kp rp l e p r p 6.56 10 11 m/kgpl, d e l e r p 2.72 10 11 m/kgpl. d e p p l r p k 1/2.4 (58.5Í ) m. p p rp r p vr l r l ~ e l l r p, rp l eˆ p p p. 4-1-2. d k l l e d k l l p kk o l, d eˆ p k p 0.5l 3 k v eˆ 1 kl l e Fig. 4l ˆ l. e s p Fig. 3l m p, v, d eˆ p k p eˆ p. Fig. 4l p 0.5 kl d eˆ 1 kl l p, p 1 kl Fig. 3. Filtration results of bentonite floc with and without at 1 atmu Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006

472 p Ë l Fig. 4. Filtration experimental result of bentonite floc with gas saturation pressure. Fig. 5. Filtration of 1 wt calcium carbonate suspension at 1 atm. Table 2. The values of the slopes and α av during filtration with various gas saturation pressures 0.5 atm 1 atm 2 atm 3 atm SlopeG[s/cm 2 ] 11.9 11.0 10.2 15.2 α av [m/kg] 3.02 10 11 2.79 10 11 2.58 10 11 3.85 10 11 d eˆ 1 kl l p. k p p pp, 2 p k pl l v v kk. l kp e 3 kl p d 1 kl p l, l (lk k 30 cm )p l 3 1 kl k 2 r ˆ p, p l l r vp p. p qp l p k p d p p l p, k p e p v m p p l k p v r( p lr) qkv, l v p Ž. p Table 2l r p v ˆ. q p o Table 2l op e l llv n l r p ˆ l. p p Š p p p k p 1 kl l e p p, l rl d k l l r p p ˆ p p. k p 0.5 kl 4 v e p p 2 kl l r p k 15Í r p m. l p k p 3 kl m r p v m. pl p d eˆ rr k p sq p p. 4-2. hm i k p rp vp ˆ dp 1 wtí ˆkl 1 kl l e p m. ˆ d ˆk 20, d eˆ l k 3 ˆkl eˆ l e p m. l k p 1 kp, d 1 kl e. Fig. 5l d tp v kk p m d e p p ˆ l. o44 o5 2006 10k Fig. 5l d tp lp l e p p, p 1wtÍ ˆ d ˆkp d 1 kl eˆ l e p p. d eˆv kkp np n 11.6 s/cm 2, d eˆ np n 9.50 s/cm 2pl. p p (6)el pe l r α av 1.16 10 12 m/kg m 9.50 10 11 m/kgp, d e p nl d n v kkp 11Í m. p Š p p n dl p r p 58.5Í l p v kp p. 4-3rl pl p r p p e. Fig. 5p t l rj p 100 ml e p k p, e p p m. 4-3. h} h} m m z i i m n m y kl k p p rp vp Š p k p p rp vp ˆ d ˆkl d n l e re m. rl Tiller[10] re l l l p e[12]p rn l, p p p. r, Š p ˆkp kpm q pvr pveˆ r p l l p l, CPC n l e p p ep a, n, B, β Table 3l ˆ l. p p p np v, k p 1.125p, p p Table 1p rpl p super compactible q k p p p. Table 3. The values of a, n, B, β of bentonite floc cake flocculated with anionic flocculant Values a 2.87 10 7 n 1.125 B 4.09 10 3 β 0.317

Fig. 6. Porosity distribution of the compressible cake formed with bentonite floc. Fig. 7. Liquid pressure distribution of the compressible cake formed with bentonite floc. Table 3l tlv p n rk k p l p l p l m kk Fig. 6 7l ˆ l. Fig. 6 7l x p x/l 0p p l ~m r p p p p, x/l 1p p ˆk r p p p p. rl p pp pp, Fig. 6l ˆk p (x/l=1)p p p 70Í v p v k, p 0.98 p p r p l. l ~m r p p (x/l=0) l r l p p k p. r lp p p qp p Tillerm Green[3]p dense skinp ( ) m. n p p (Ã Ã)p p vp. p sq om p l p 1973 p rp m lp [3], 1984 Yim[4]l p e rp sq p l. pm p l ~ l p p Fig. 7p k~ k l r. p k p n p l r~ p p l k p v k, l ~m r p p p l r~ p p 7Í p p l r~ k p 93.5Í. Š p p l l d e l p ˆ ( ) dl p p l p 473 v p p l p k m l vl. v, k~l p d v k~ p, 90Íp v k p p lp k~l kp ˆ ov. l l Fig. 7 l m p k p kv dp n. kp d l ( )p l ~ ˆ l pr v l errp qp p. p p p p, p p l l v qrrp r m. e t l ~ k l np m p p. pp, ˆ d pq p l l p l m kk m. Š p p m v ep p a, n, B, β p n. p p Tiller [16]p re p n, B, β p n l l p e[12]l p l a p n m. p p Table 4l ˆ l. Table 1l p moderatedly compactigle p p k n p 0.4~0.7p, p vp k p 0.192 k p p l p. Table 4l ˆ ep p n l ˆ d pq p l p m k~ k Fig. 8 9l ˆ l. k p qp p p l p Fig. 8p Fig. 6p k p n p p m. v, ˆ d p l ˆk r p (l ~m r p p k )l p p, l p p v k. p p Fig. 6p k p n p p m p. l ~m r p (x/l = 0)p tp, p Table 4. The values of a, n, b, β of CaCo 3 cake Values a 1.55 10 10 n 0.192 B 0.138 β 0.057 Fig. 8. Porosity distribution of the CaCO 3 cake. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006

474 p Ë l Fig. 9. Liquid Pressure distribution of the CaCO 3 cake. Fig. 10. Filtration result of flocculated digestion sludge with and without at 0.5 atm. p 50Í p p p lp p p p v. k p qp ˆ d l p p kk Fig. 9l ˆ l. mr k p l kkp v p lk. Fig. 9l p kkp v p k n k p p p kk p Fig. 7 n ˆ p. k p l p x/ll p k v ˆ k p d ~ p. p ~ v qp p plr p p p l v p. p qp p l sq m p p p p p. n r l r p p v p p. k rl r m p ~ n v kp l r 1.16 10 m/kgl ~ 12 n n 9.50 10 m/kg p p p 11 p k llt. 4-4. s i d vp l r p k 10 13 ~10 14 m/kg op. d v vr l, l n rrp l r v k. l l r d v 800 mll 0.1Í kpm q pvr(ycx-452) ~ l 4 p 10 p m p pvp v, 7 re r t 200 ml } l l e p m. d tp l l l e Fig. 10l ˆ l. e l n l ~ Toyo 5Ap, l k p 0.5 kp. Fig. 10p l r v p n (6)el p l l r p, d tpeˆv kkp 6.72 10 11 m/kg pl, d eˆ l e 8.12 10 11 m/kg pl. d p d vp l r p k 20Í v m. p kp Š p p l m pl p p vp p. ~w pveˆ d v k p n v kk p v kk r p. pv d vl q rp e p ep CPC o44 o5 2006 10k r v l a, n, B, β p k l. ~rp k np p 0.7p p e. np 0.7 r p v kk ~ p lp, t l s j ~ np p p l l r p v eˆ p p. p nl rr pvrm pvs p n l p r k p p eˆ p kp Š p r p l eˆ p p p. w pveˆ d vp k p ƒ p n p. p d vl sq r p o vp l l pl ~ np p p p p. p n le ~ np p l l r p v eˆ. p nl p lp l ~ n p p p s, v, d vp s p s l o vp eˆ k p l ~ p p p sq p p. 5. p n k p p k p v p p r p v eˆ. l, p r r~ l r p v e k p v l v. p p p l v eˆ o, k p v p p k p r Š p p l e rk p ˆ d ˆkl d tpl l l e p m. r Š p l d e l n l 2 p v, ˆ d pq p l dp l p l p p lv m. p p (dense skin)p p n l p rp m. y 1. Tiller, F. M., The Role of Porosity in Filtration: Numerical

p ˆ ( ) dl p p l p 475 Methods for Constant Rate and Constant Pressure Filtration Based on Kozeny s Law, Chemical Engineering Progress, 49(9), 467-497(1953). 2. Tiller, F. M. and Cooper, H., The Role of Porosity in Filtration: V. Porosity Variation in Filter Cakes, AIChE. J., 8(4), 445-449 (1962). 3. Tiller, F. M. and Green, T. C., The Rold of Porosity in Filtration: IX. Skin Effect with Highly Compressible Materials, AIChE. J., 19(6), 1266-1269(1973). 4. Yim, S. S., Filtration Sur Gateau Compressible, Ph. D. Dissertation, L'Institut National Polytechnique de Toulouse, France(1984). 5. Carman, P. C., Fundamental Principles of Industrial Filtration, Transactions - Institution of Chemical Engineers, 168-188(1938). 6. D Arcy, H. P. G., Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris(1856). 7. Yim, S. S., A Theoretical and Experimental Study on Cake Filtration With Sedimentation, Korean J. Chem. Eng., 16(3), 308-315 (1999). 8. Yim, S. S., Kwon, Y. D. and Kim, H. I., Effects of Pore Size, Suspension Concentration, and Pre-sedimentation on the Measurement of Filter Medium Resistance in Cake Filtration, Korean J. Chem. Eng., 18(5), 741-749(2001). 9. Yim, S. S., Song, Y. M. and Jun, S. J., Study on the Measurement of Average Specific Cake Resistance in Cake Filtration of Particulate Suspension and Sedimented Floc, HWAHAK KONG- HAK, 40(3), 330-339(2002). 10. Tiller, F. M., The Role of Porosity in Filtration II: Analytical Equations for Constant Rate Filtration, Chem. Eng. Prog., 51(6), 282-290(1955). 11. Shirato, M., Kato, H., Kobayashi, K. and Sakazaki, H., Analysis of Settling of Thick Slurries due to Consolidation, J. Chem. Eng. Japan, 3(1), 98-104(1970). 12. Yim, S. S., Song, Y. M. and Kwon, Y. D., The Role of P i, P a, and P f in Constitutive Equation, and Boundary Condition in Cake Filtration, Korean J. Chem. Eng., 20(2), 334-342(2003). 13. Tiller, F. M. and Horng, L. L., Hydraulic Deliquoring of Compressible Filter Cakes, AIChE J., 29(2), 297-305(1983). 14. Tiller, F. M. and Li, W., Theory and Practice of Solid/Liquid Separation, 4th ed., Frank M. Tiller and Wenping Li(2002). 15. Yim, S. S. and Ben-Aim, R., Highly Compressible Cake Filtration: Application to the Filtration of Flocculated Particles, 4 th World Filtration Congress, A1-A7(1986). 16. Tiller, F. M., Crump, J. R. and Ville, F., Filtration Theory in its Historical Perspective, A Revised Approach with Surprises, 2 nd World Filtration Congress, 1-13(1979). Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006