Non-Markovian dynamics of an open quantum system in fermionic environments

Σχετικά έγγραφα
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

D-Wave D-Wave Systems Inc.

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Student s t and F Distributions Page 1

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

derivation of the Laplacian from rectangular to spherical coordinates

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Homework 3 Solutions

The Simply Typed Lambda Calculus

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

Notes on the Open Economy

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 12 Modulation and Sampling

Χρονοσειρές Μάθημα 3

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Large deviations of the density and of the current in non equilibrium steady states

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Derivation of Optical-Bloch Equations

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Second Order RLC Filters

3 Frequency Domain Representation of Continuous Signals and Systems

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Parametrized Surfaces

Managing Production-Inventory Systems with Scarce Resources

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

Second Order Partial Differential Equations

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Math221: HW# 1 solutions

Example Sheet 3 Solutions

Models for Probabilistic Programs with an Adversary

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Higher Derivative Gravity Theories

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Uniform Convergence of Fourier Series Michael Taylor

6.003: Signals and Systems. Modulation

UV fixed-point structure of the 3d Thirring model

is the home less foreign interest rate differential (expressed as it

Analiza reakcji wybranych modeli

Every set of first-order formulas is equivalent to an independent set

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lecture 2. Soundness and completeness of propositional logic

Homework 8 Model Solution Section

The canonical 2nd order transfer function is expressed as. (ω n

EE101: Resonance in RLC circuits

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions

A Control Method of Errors in Long-Term Integration

(b) flat (continuous) fins on an array of tubes

Fourier Transform. Fourier Transform

Rektangulär fläns, Rectangular fin

Pricing Asian option under mixed jump-fraction process

Exercises to Statistics of Material Fatigue No. 5

Les gouttes enrobées

C.S. 430 Assignment 6, Sample Solutions

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Other Test Constructions: Likelihood Ratio & Bayes Tests

Linear singular perturbations of hyperbolic-parabolic type

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

The third moment for the parabolic Anderson model

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Reminders: linear functions

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

EE512: Error Control Coding

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Numerical Analysis FMN011

Additional Results for the Pareto/NBD Model

Analytical Expression for Hessian

Matrices and Determinants

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

CRASH COURSE IN PRECALCULUS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

PARTIAL NOTES for 6.1 Trigonometric Identities

14 Lesson 2: The Omega Verb - Present Tense

Approximation of distance between locations on earth given by latitude and longitude

Fractional Colorings and Zykov Products of graphs

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

Non-Marovian dynamics of an open quanum sysem in fermionic environmens J. Q. You Deparmen of Physics, Fudan Universiy, Shanghai, and Beijing Compuaional Science Research Cener, Beijing Mi Chen (PhD suden a Fudan) Suppored by he Naional Naural Science Foundaion of China and he Naional Basic Research Program of China (973 Program) The Worshop on Correlaions and Coherence in Quanum Sysems Evora, Porugal, 8-1 Ocober, 1

Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Summary and ouloo

Wha is an open quanum sysem? How o describe is dynamics? Sysem plus environmen framewor Open sysem Environmen Closed sysem Considered sysem Noise Non-Marov or Marov Non-Marov is he rule, Marov is he excepion (N. G. van Kampen) Reduced densiy operaor: ρ () = Tr { ρ () } sys env o

Non-Marov vs. Marov Non-Marovian dynamics (memory environmen): The ime evoluion of he sysem s sae depends on is hisory. ρ() i = [ Hsys, ρ( )] + κ(, s) ρ( s) ds h Marov approximaion (memoryless environmen): Replace ρ( s) by ρ( ) Lindblad form: ρ i Γ = H + L L + L L h [ sys, ρ] ([, ρ ] [ ρ, ]) The reservoir is assumed o be of a broadband specrum, so as o have a correlaion ime (memory ime) much shorer han he dynamical (evoluion) ime of he considered sysem.

Maser equaion under Born-Marov approximaion Born approximaion (nd-order approximaion): Wea ineracion Typical assumpion: ρo () = ρsys () ρenv() ρ() i 1 = [ Hsys, ρ( )] d' [ H in ( ),[ Hin ( '), ρin ( ')]] h h env One can use i o derive a non-marovian maser equaion, bu his mehod is perurbaive (i.e., i applies o a wea sysem-bah coupling). Marov approximaion: ρin ρin Replace ( ') by ( ) ρ() i 1 = [ Hsys, ρ( )] d' [ H in ( ),[ Hin ( '), ρin ( )]] h h env H. Carmichael, An open sysems approach o quanum opics (Springer 1993)

Two non-perubaive mehods for non-marovian dynamics Feynman-Vernon influence funcional approach R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 4, 118 (1963) Non-Marovian maser equaion for quanum Brown moion model : B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 843 (199) Non-Marovian maser equaion of a double-quanum-do sysem: M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 35311 (8). Non-marovian quanum rajecories Non-Marovian quanum sae diffusion (NMQSD) L. Diosi, N. Gisin, and W. T. Srunz, Phys. Rev. A 58, 1699 (1998); W. T. Srunz, L. Diosi, and N. Gisin, Phys. Rev. Le. 8, 181 (1999); T. Yu, L. Diosi, N. Gisin, and W. T. Srunz, Phys. Rev. A 6, 91 (1999). Quanum hree-level sysem: J. Jing and T. Yu, Phys. Rev. Le. 15, 443 (1) Exension o he fermionic-bah case: Mi Chen and J.Q. You, arxiv:13.17; Wufu Shi, Xinyu Zhao and Ting Yu, arxiv:13.19.

Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Summary and ouloo

Some exacly solvable models Toal Hamilonian: H H ( g L = + o sys b g ) Lb + + ω bb Sochasic Schrödinger equaion (Diosi-Gisin-Srunz equaion) ψ + ( z ) = [ ihsys + Lz + L O(, z)] ψ ( z) (, ) = α( ) (,, ) Oz sosz ds ρ ψ ψ Μ{ ( z ) ( z)} iω ( s ) α ( s ) J ( ω ) e d ω == Spin-boson pure dephasing model ω H sys σ z = L = σ z Osz Spin-boson dissipaive model (,, ) = L ω = σ L = σ H sys z Osz (,, ) = (, ) f sσ f (, s) = [ iω+ α( s') f(, s') ds'] f(, s) f(,) = 1

Some exacly solvable models Damped harmonic oscillaor model Hsys = ωaa L= a Osz (,, ) = (, ) f sa f (, s) = [ iω+ α( s') f(, s') ds'] f(, s) f(,) = 1 Quanum Brown moion model p 1 H sys m q m = + ω L= q (,, ) (, ) (, ) (,, ') s' ' Osz = f sq+ gs p i jss zds Exac non-marovian maser equaion a () b () ρ ρ ρ ρ ρ ρ i i = i[ Hsys, ] + [ q, ] + [ q,{ p, }] + c()[ q,[ p, ]] d()[ q,[ q, ]] B. L. Hu e. al., Phys. Rev. D 45, 843 (199); W. T. Srunz and T. Yu, Phys. Rev. A 69, 5115 (4).

Ouline Open quanum sysems and he maser equaion formalism: Non-Marov vs. Marov Non-Marovian quanum sae diffusion (QSD) in a bosonic bah: Some exacly solvable models Non-Marovian QSD in fermionic environmens Solid-sae quanum circuis (see, e.g., JQY and Nori, Naure 474, 589-597 (11) ; Xiang, Ashhab, JQY and Nori, arxiv: 14.137, o appear in Rev. Mod. Phys.) Fermionic bahs: Elecric leads, bacground charge flucuaions, Summary and ouloo

Quanum confined sysem coupled o fermionic reservoirs Quanum do Double quanum do The oal Hamilonian of a quanum confined sysem coupled o wo fermionic reservoirs H = H + H + H o sys in env H g c a g c a H c in = ( L L L + R R R +..) H a a a a env = ( ωl L L + ωr R R) In a quanum sae diffusion approach, environmens are required o be iniially a zero emperaure, so as o convenienly represen he environmenal degrees of freedom wih he coheren sae basis.

Bogoliubov ransformaion: Convering a nonzero- o a zero-emperaure problem As for environmens iniially wih a nonzero emperaure, one can map he nonzero-emperaure densiy operaor o a zero-emperaure densiy operaor using a Bogoliubov ransformaion [T. Yu, Phys. Rev. A 69, 617 (4)]. By including he par involving holes in he elecric leads, he oal Hamilonian can be wrien as H = H + ( g c a + H. c.) + ω a a + ω b b o sys Performing Bogoliubov ransformaion for fermionic operaors: a n d n e = 1 b n e n d = 1 + H = H + n g c d + H c + n g c e + H c + ' o sys 1 (..) (..) H H n g c d e n g c e e H c iω iω ' o ( ) = sys + ( 1 + +..) ω d d + ω e e The fermionic bahs wih nonzero iniial emperaures are mapped o virual fermionic bahs wih zero iniial emperaure.

Fermionic coheren saes represenaion Iniial condiion Ψ = ψ = d e d = e = Fermionic coheren sae basis for he environmens z = z = e z d Grassmann variables z, w w e w = w = e zw = z w In he coheren sae represenaion Ψ = ih () Ψ o ψ z w zw Ψ ψ (, ) ( z, w) = i zw Ho( ) Ψ Use he following equaions: d zw = z zw d zw = zw z z () s δ = ds z z z () s δ e zw w zw w () s δ ds w w w () s = δ = (chain rules) e zw = zw w

Non-Marovian quanum sae diffusion (QSD) equaion Non-Marovian QSD equaion (sochasic Schrödinger equaion) Noise funcion ψ = ih ψ c z + sys [ ( ) δ cw ()] ψ c α 1( s) ψ ds c α ( s) ψ ds δz() s δw() s iω = iω z () i 1 n g z e w () = i n g w e Saisical properies of noise funcion M{ z ( )} = M{ z ( ) z ( s)} = M{ z ( ) z ( s)} = α ( s) = dω[1 n ( ω)] J ( ω) e ω i ( s) 1 ( ) M{ w( )} = M{ w( ) w( s)} = M{ w ( ) w ( s)} ( s) d n ( ) J ( ) e iω s = α = ω ω ω zz ww M{ L} e { L} d zd w δ zz= z z ww= w w d z = dzdz d w = dw dw The compleeness relaion for coheren saes: zz ww e zw zw d zd w = 1

The O-operaor and is equaion of moion Non-Marovian QSD equaion (sochasic Schrödinger equaion) ψ = ih ψ c z + sys [ ( ) δ cw ()] ψ c α 1( s) ψ ds c α ( s) ψ ds δz() s δw() s Lie he Diosi-Gisin-Srunz equaion in he bosonic-bah case, we inroduce he O-operaors: O δ δ z δ ψ (, ) z w = O (, s, z, w ) ψ( z, w ) δ w () s ψ (, ) z w = O1(, s, z, w ) ψ( z, w ) () s Equaion of moion for he O-operaors: δ O z w = c O (,,, ) 1 (,, z, w ) = c = [ ih ( c O + c O ), O ] + Q + ({ c, O } z ( ) + { c, O } w ( )) n + sys ' '1 ' ' n n ' n ' ' n ' ' ' O O O O Q c δ c δ c δ c δ L1 R1 L R n = L + R + L + R δλn δλn δλn δλn Λ = 1 z () s Λ = w () s

Non-Marovian maser equaion Sochasic reconsrucion of he reduced densiy operaor: ρ = Tr Ψ Ψ = e ψ ( z, w ) ψ ( z, w) d zd w M{ ψ ( z, w ) ψ ( z, w)} z z w w env Sochasic projecion operaor P z w z w ρ = M { P } ψ(, ) ψ(, ) Non-Marovian maser equaion ρ = ihsys ρ + c Μ PO 1 z w c Μ O1 z w P [ c, Μ{ O (, z, w ) P }] + [ c, Μ{ PO (, z, w)}] [, ] ([, { (,, )}] [, { (,, ) }] Generally, i is complex, bu can have a simple form for a given sysem. Marov limi α ( s) [1 n ] ( s) 1 δ Γ α ( s) n ( s) Γ δ Γ ρ ρ ρ ρ ρ ρ ρ ρ = ih [ sys, ] + [ n( c c cc cc ) + (1 n)( c c cc cc )]

Applicaions: (1) Single quanum do Single quanum do H = H + H + H o sys in env H = ( ω a a + ω a a ) env L L L R R R = L L L + R R R + H sys = ωcc L = R = Hin ( g c a g c a H. c.) c c c Srong Coulomb blocade: U Consrain: Only one elecron is allowed in he single quanum do O-operaors 1 = 1 + 1 L + R (,,, ) = (, ) + L + R O (, s, z, w ) f (, s) c q (, s, s')[ w ( s') w ( s')] ds' O s z w f s c q (, s, s')[ z ( s') z ( s')] ds'

Applicaions: (1) Single quanum do Exac non-marovian maser equaion ih [ sys, ] 1( )[ c, c] ( )[ cc, ] 1( ) ρ = ρ +Γ ρ +Γ ρ Γ [ c, cρ ] Γ( ) [ c, ρc] wih ime-dependen raes: Γ () = [ α ( s) A (, s) α ( s) B (, s)] ds j 1 j j ( s iω ) Aj(, s) + β( s s') A (, ') ' (, ) j s ds = U s s ( s iω ) Bj( s, ) + β( s s') B(, ') ' (, ) j s ds = Vs s ( iω ) h(, s) β( s') h(, s') ds' = s s Final condiion a : s = 1 1 α ( s) = α ( s) + α ( s) j Lj Rj Us (, ) = α ( shs ) (, ') ds' Vs (, ) = α ( shs ) (, ') ds' 1 β ( s s') = α ( s' s) + α ( s s') 1 A (,) = B (,) = h(,) = 1 A(,) = B(,) =

Applicaions: (1) Single quanum do Exac non-marovian maser equaion ih [ sys, ] 1( )[ c, c] ( )[ cc, ] 1( ) ρ = ρ +Γ ρ +Γ ρ Γ [ c, cρ ] Γ( ) [ c, ρc]

Applicaions: (1) Single quanum do Marov limi: 1 1 Γ1() [1 nl( ω)] Γ L + [1 nr( ω)] Γ 1 1 Γ( ) nl( ω) ΓL nr( ω) Γ R R Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )] Large bias limi: μl ω μr Zero emperaure: > > nl ( ω ) = 1 nr ( ω ) = & ρ = Γ ρ + Γ ρ & ρ =Γ ρ Γ ρ L R 11 11 L R 11 & ρ = [ iω +Γ +Γ ] ρ 1 L R 1 empy do sae 1 occupied do sae S. A. Gurviz and Ya. S. Prager, Phys. Rev. B 53, 1593 (1996)

Applicaions: () Double quanum do Double quanum do (a) U U, V = Consrain: A mos wo elecrons are allowed in he DQD. (b) 1 1 1 1 1, V H = ωcc+ ω cc +Ω ( cc+ cc) cl c1 sys O-operaors H a a a a H = H + H + H env = ( ωl L L + ωr R R) o sys in env Consrain: Only one elecron is allowed in he DQD. = cr = c 1 = 1 1+ + 3 L + 4 R O (, sz,, w) f (, sc ) f (, sc ) [ f (, ss, ') w( s') f (, ss, ') w( s')] ds' = 1 1+ + 3 L + 4 R H g c a g c a H c in = ( L L L + R R R +..) O (, sz,, w) m (, sc ) m (, sc ) [ m (, ss, ') w( s') m (, ss, ') w( s')] ds'

Applicaions: () Double quanum do Exac non-marovian maser equaion = [, ] +Γ ( )[, ] +Γ ( )[, ] +Γ ( )[, ] +Γ ( )[, ] i Hsys L1 c1 c1 L c1 c1 L3 c1 c L4 c1 c ρ ρ ρ ρ ρ ρ +Γ ()[ ()[ ()[ R1()[ c, ρc1] + Γ R c, c1 ρ] + Γ R3 c, ρc] + ΓR4 c, c ρ ] () Γ L 1 [ c1, ρc1] ΓL( ) [ c1, c1ρ ] ΓL3( ) [ c1, cρ] Γ L4( ) [ c1, ρc] Γ () R1 [ c, ρc1] ΓR( ) [ c, c1ρ ] ΓR3( ) [ c, cρ] Γ R4( ) [ c, ρc] wih ime-dependen raes A j (, s) B j (, s) Γ () = [ α ( s) A (, s) α ( s) B (, s)] ds j 1 j j saisfy a se of inegro-differenial equaions, wih final condiions A (,) = A (,) = B (,) = B (,) = 1 L1 R3 L R4 A (,) = B (,) = for oher, j j j

Applicaions: () Double quanum do Marov limi: 1 1 Γ L1() = [1 nl( ω1)] Γ Γ L L() = n ( 1) L ω Γ 1 1 Γ R3() = [1 nr ( ω)] Γ Γ R R4() = n ( ) R ω Γ L R Γ () =Γ () =Γ () =Γ () = R1 R L3 L4 Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )]

Applicaions: () Double quanum do Maser equaion in he Lindblad form: ρ = ρ + Γ ρ ρ ρ + ρ ρ ρ ih [ sys, ] [ n( c c cc cc ) (1 n)( c c cc cc )] Large bias limi and zero emperaure condiion μ ω ω μ L > 1, > R 1 nl( ω ) = 1 nr( ω ) = empy do 1, lef (righ)do occupied 3 boh dos occupied Srong Coulomb-blocade regime (a) Srong inerdo Coulomb repulsion & ρ = Γ ρ +Γ ρ L R & ρ ρ ρ ( ρ ρ ) 11 =Γ L +Γ R 33 + iω 1 1 & ρ ( ) ρ ( ρ ρ ) = Γ L +ΓR iω 1 1 & ρ33 =ΓLρ ΓRρ33 Γ +Γ & ρ = i( ω ω ) ρ + iω ( ρ ρ ) ρ S. A. Gurviz and Y. S. Prager, PRB 53,1593 (1996); L R 1 1 1 11 1 M. W. Y. Tu and W. M. Zhang, PRB 78, 35311 (8). (b) Boh srong inra- and inerdo Coulomb repulsions & ρ = Γ ρ +Γ ρ L R & ρ =Γ ρ + iω ( ρ ρ ) 11 L 1 1 & ρ = ΓRρ iω( ρ1 ρ1) Γ & ρ = i( ω ω ) ρ + iω ( ρ ρ ) ρ R 1 1 1 11 1 T. H. Soof and Y. V. Nazarov, PRB 53,15 (1996)

Summary Summary and ouloo Non-Marovian quanum sae diffusion (QSD) approach is exended o deal wih he fermionic environmens. Non-Marovian maser equaion is derived. The approach is applied o single quanum do and double quanum do, each coupled o wo elecric leads. Ouloo Connecion o Feynman-Vernon influence funcional approach? Non-Marovian QSD for a spin environmen? Non-Marovian QSD for he sysem nonlinearly coupled o eiher a bosonic or fermionic bah?