Large deviations of the density and of the current in non equilibrium steady states

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Large deviations of the density and of the current in non equilibrium steady states"

Transcript

1 Large deviaions of he densiy and of he curren in non equilibrium seady saes Bernard DERRIDA Universié Pierre e Marie Curie and Ecole Normale Supérieure, Paris June 2012 Lyon

2 COLLABORATORS J.L. Lebowiz, E.R. Speer C. Enaud B. Douço, P.-E. Roche T. Bodineau C. Apper, V. Lecome, F. van Wijland A. Gerschenfeld, E. Brune

3 Ouline Densiy ucuaions in non-equilibrium sysems Curren ucuaions Open quesions Non seady sae siuaions Deerminisic dynamics

4 Non equilibrium seady saes: curren of paricles

5 Non equilibrium seady saes: curren of paricles ρ a Sysem ρ b

6 Non equilibrium seady saes: curren of hea T a Sysem T b

7 Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) L

8 Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) L P(Q) = P( Q)

9 Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem

10 Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem Q 2 1 L Q A(T a, T b ) L Fourier's law

11 Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem Q 2 1 L P(Q)? Q A(T a, T b ) L Fourier's law

12 Q Ta T b L Equilibrium (T a = T b ) Non-equilibrium seady sae (T a T b )

13 Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions

14 Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions Shor range correlaions Long range correlaions

15 Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions Shor range correlaions Time symmery of ucuaions Long range correlaions Time asymmery of ucuaions

16 Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ N n paricles in v V

17 Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ n 2 n 2 = kt vρ κ V N n paricles in v κ is he compressibiliy, ρ he densiy in he reservoir and T he emperaure.

18 Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ n 2 n 2 = kt vρ κ V N n paricles in v κ is he compressibiliy, ρ he densiy in he reservoir and T he emperaure. Variance of he ucuaion = k Response coecien Bolzmann Consan k J/K

19 Large deviaions of he densiy n v N paricles N = Vρ ( n ) Pro v = r exp[ v a(r)] N n paricles in v V a(r) a(r) is he large deviaion funcion ρ r A equilibrium a(r) is he free energy

20 Large deviaion funcional ρ 1 ρ 2 ρ k L Pro(ρ 1,...ρ k ) exp [ L d F(ρ 1,...ρ k ) ] Large number k of boxes r = L x Pro({ρ( x)}) exp [ L d F({ρ( x)}) ]

21 Exclusion processes SSEP (Symmeric simple exclusion process) α γ L ρ a = α α + γ, ρ b = δ β + δ β δ

22 Large deviaion funcion for he SSEP Pro({ρ(x)}) exp[ LF({ρ(x)})] Equilibrium ρ a = ρ b = F F({ρ(x)}) = 1 0 dx [ (1 ρ(x)) log 1 ρ(x) 1 F + ρ(x) log ρ(x) F ]

23 Large deviaion funcion for he SSEP Pro({ρ(x)}) exp[ LF({ρ(x)})] Equilibrium ρ a = ρ b = F F({ρ(x)}) = 1 0 dx [ (1 ρ(x)) log 1 ρ(x) 1 F + ρ(x) log ρ(x) F ] Non-equilibrium (ρ a ρ b ) D Lebowiz Speer Berini De Sole Gabrielli Jona-Lasinio Landim 2002 F = sup F (x) [ dx (1 ρ(x)) log 1 ρ(x) ρ(x) + ρ(x) log 1 F (x) F (x) + log F ] (x) ρ b ρ a wih F (x) monoone, F (0) = ρ a and F (1) = ρ b

24 Non-equilibrium ρ a ρ b F = sup F (x) [ dx (1 ρ(x)) log 1 ρ(x) ρ(x) + ρ(x) log 1 F (x) F (x) + log F ] (x) ρ b ρ a F is non-local: for example for small ρ a ρ b F({ρ(x)}) = Z 1 + (ρ a ρ b ) 2 (ρ a ρ 2 a) 2 + O(ρ a ρ b ) 3 dx (1 ρ(x)) log 1 ρ(x) 1 ρ (x) 0 Z 1 Z 1 dx 0 x where ρ (x) = ρ(x) =(1 x)ρ a + xρ b Long-range correlaions Spohn 82 + ρ(x) log ρ(x) ρ (x) dy x(1 y)`ρ(x) ρ (x) `ρ(y) ρ (y) ρ(x)ρ(y) ρ(x) ρ(y) 1 G(x, y) = (ρ a ρ b ) 2 x(1 y) L L

25 Large deviaion funcional Pro({ρ(x)}) exp[ Acion] = exp [ LF({ρ(x)})] Equilibrium 1. F local 2. F = T 1 d x f (ρ( x)) f is he free energy per uni volume 3. Shor range correlaions

26 Large deviaion funcional Pro({ρ(x)}) exp[ Acion] = exp [ LF({ρ(x)})] Equilibrium 1. F local 2. F = T 1 d x f (ρ( x)) f is he free energy per uni volume 3. Shor range correlaions Non-equilibrium 1. F non local 2. Weak long range correlaions (SSEP for x < y) Spohn 1982 (ρ(x) ρ (x))(ρ(y) ρ (y)) 1 L G(x, y) = (ρ a ρ b ) 2 x(1 y) L 3. Higher correlaions ρ(x 1 )ρ(x 2 ))...ρ(x n ) c L 1 n

27 TWO APPROACHES SSEP (Symmeric simple exclusion process) α β γ 1 L δ Microscopic Behe ansaz, Perurbaion heory, Compuer,... Macroscopic i = Lx, = L 2 τ Pro({ρ(x, τ), j(x, τ)}) exp [ L T /L 2 0 d 1 0 ] dx [j + ρ ] 2 4ρ(1 ρ)

28 Marix ansaz Seady sae of he SSEP α Fadeev 1980,..., D Evans Hakim Pasquier 1993 β γ 1 L δ P(τ 1,..., τ L ) = W X 1... X L V W (D + E) L V where X i = { D E if sie i occupied if sie i empy

29 Marix ansaz Seady sae of he SSEP α Fadeev 1980,..., D Evans Hakim Pasquier 1993 β γ 1 L δ P(τ 1,..., τ L ) = W X 1... X L V W (D + E) L V where X i = { D E if sie i occupied if sie i empy W (αe γd) = W DE ED = D + E (βd δe) V = V

30 Large diusive sysems ρ a ρ b A diusive sysem For ρ a ρ b small: Q = D(ρ) (ρ a ρ b ) L Fick's law ρ a = ρ b = ρ : Q 2 = σ(ρ) L

31 Large diusive sysems ρ a ρ b A diusive sysem For ρ a ρ b small: Q = D(ρ) (ρ a ρ b ) L Fick's law ρ a = ρ b = ρ : Q 2 = σ(ρ) L Noe ha σ(ρ) = 2kT ρ 2 κ(ρ)d(ρ) where κ is he compressibiliy

32 Macroscopic ucuaion heory Onsager Machlup heory for non equilibrium diusive sysems Kipnis Olla Varadhan 89 Spohn 91. Berini De Sole Gabrielli Jona-Lasinio Landim 2001 Evoluion of a prole ρ(x, ) for 0 T Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) dρ d = dj dx (conservaion law) ρ(0, ) = ρ a ; ρ(1, ) = ρ b

33 Macroscopic ucuaion heory Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) j(x, ) = ρ (x, )D(ρ(x, )) + 1 L η(x, )

34 Macroscopic ucuaion heory Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) j(x, ) = ρ (x, )D(ρ(x, )) + 1 L η(x, ) wih he whie noise η(x, )η(x, ) = 2σ(ρ(x, ))δ(x x )δ( )

35 dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax?

36 dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) )

37 dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) ) How is a ucuaion ρ(x, 0) produced?

38 dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) ) How is a ucuaion ρ(x, 0) produced? Minimize he Acion wih ρ(x, ) = ρ seady sae (x)

39 Macroscopic ucuaion heory Berini De Sole Gabrielli Jona-Lasinio Landim ρ a ρ(x,) ρ(x) ρ*(x) ρ b 0 x 1 Z 0 F({ρ(x)}) = min d ρ(x,) Z 1 0 dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) wih ρ(x, 0) = ρ(x) ; ρ(x, ) = ρ (x)

40 SSEP How does a ucuaion ρ(x, 0) relax? dρ(x, ) d = d 2 ρ(x, ) dx 2 How is a ucuaion ρ(x, 0) produced? dρ(x, s) ds = d 2 ρ(x, s) 2 (ρ a ρ b ) dρ(x, s) (1 2ρ(x, s)) +O ( (ρ dx 2 a ρ b ) 2) ρ a (1 ρ a ) dx

41 Curren ucuaions in non-equilibrium seady saes T a T b

42 Curren ucuaions in non-equilibrium seady saes T a T b Curren ucuaions on a ring T

43 AVERAGE CURRENT OF HEAT Q Ta L T b Q = F (T a, T b, L, conacs)

44 AVERAGE CURRENT OF HEAT Q Ta L T b Q = F (T a, T b, L, conacs) FOURIER's law: large L Q G(T a, T b ) L large L and T a T b small Q D(T ) T a T b D(T ) T L

45 AVERAGE CURRENT OF PARTICLES Q ρa L ρ b Q = F (ρ a, ρ b, L, conacs)

46 AVERAGE CURRENT OF PARTICLES Q ρa L ρ b Q = F (ρ a, ρ b, L, conacs) FICK's law: large L Q G(ρ a, ρ b ) L large L and ρ a ρ b small Q D(ρ) ρ a ρ b D(ρ) ρ L

47 ONE DIMENSIONAL MECHANICAL SYSTEMS Ideal gas No Fourier's law Harmonic chain E = p 2 i 2m + i g(x i+1 x i ) 2 Q G(T a, T b )

48 ONE DIMENSIONAL MECHANICAL SYSTEMS Ideal gas No Fourier's law Harmonic chain E = p 2 i 2m + i g(x i+1 x i ) 2 Q G(T a, T b ) Hard paricle gas Anomalous Fourier's law T a Anharmonic chain T a Q G(T a, T b ) L 1 α.3 α.5 Delni Lepri Livi Polii Livi, Spohn, Grassberger,...

49 DIFFUSIVE SYSTEMS: average curren Symmeric exclusion α γ 1 L β δ Fourier's law General laice gas Random walkers KMP model Kipnis Marchioro Presui Q G(T a, T b ) L

50 SSEP (Symmeric simple exclusion process) D. Douço Roche 2004 α γ L ρ a = α α + γ, ρ b = δ β + δ β δ Q() lim 1 L [ρ a ρ b ] Fick s law Q 2 () c lim 1 L Q 3 () c lim 1 L (ρ a ρ b ) [ ρ a + ρ b 2(ρ2 a + ρ a ρ b + ρ 2) b 3 [ ] 1 2(ρ a + ρ b ) + 16ρ2 a + 28ρ a ρ b + 16ρ 2 b 15 ]

51 CURRENT FLUCTUATIONS AND LARGE DEVIATIONS Q T a T b Q Energy ransferred during ime F(j) Pro ( Q ) = j exp[ F (j)] j * j Expansion of F (j) near j gives all cumulans of Q

52 DIFFUSIVE SYSTEMS: higher cumulans Q ρa ρ b Bodineau D L For ρ a ρ b small: Q = D(ρ)(ρ a ρ b ) L ρ a = ρ b = ρ : Then one can calculae Q 2 = σ(ρ) L All cumulans of Q for arbirary ρ a and ρ b

53 ADDITIVITY PRINCIPLE Pro ( Q = j, ρ a, ρ b ) exp[ F L+L (j, ρ a, ρ b )] Bodineau D Q ρ a ρ b L L Addiiviy P L+L (Q, ρ a, ρ b ) max ρ [P L(Q, ρ a, ρ) P L (Q, ρ, ρ b )] F L+L (j, ρ a, ρ b ) = min ρ [F L (j, ρ a, ρ) + F L (j, ρ, ρ b )]

54 VARIATIONAL PRINCIPLE F L (j, ρ a, ρ b ) = 1 L min ρ(x) Z 1 0 dx [j L + ρ (x) D(ρ(x))] 2 2σ(ρ(x)) Bodineau D ρ a ρ (x) ρ*(x) ρ b 0 x 1 Saises he ucuaion heorem F (j) F ( j) = j ρb ρ a D(ρ) σ(ρ) dρ Gallavoi Cohen 1995 Evans Searls Kurchan 1998 Lebowiz Spohn 1999

55 DIFFUSIVE SYSTEMS: all he cumulans Bodineau D Q c Q 2 c Q 3 c Q 4 c = 1 L I 1 = 1 L = 1 L = 1 L I 2 I 1 3 ( I 3 I 1 I2 2 ) I1 3 3 ( 5 I 4 I I 1I 2 I I2 3 ) I1 5 where I n = ρa ρ b D(ρ)σ(ρ) n 1 dρ For he SSEP D(ρ) = 1 and σ(ρ) = 2ρ(1 ρ) For he KMP D(ρ) = 1 and σ(ρ) = 4ρ 2 For he random walkers D(ρ) = 1 and σ(ρ) = 2ρ

56 TRUE VARIATIONAL PRINCIPLE Berini De Sole Gabrielli Jona-Lasinio Landim 2005 F (j) = 1 L lim min T ρ(x,),j(x,) 1 T d T dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) wih dρ d = dj dx (conservaion), ρ (0) = ρ a, ρ (1) = ρ b and j T = T 0 j (x)d Sucien condiion for he opimal prole o be ime independen Dynamical phase ransiion Bodineau D he opimal ρ (x) sars o become ime dependen

57 SSEP ON A RING Apper D Lecome Van Wijland 2008 N paricles L sies ρ = N L 1 1 Q ux hrough a bond during ime

58 CUMULANTS OF THE CURRENT FOR THE SSEP ON A RING paricles and L sies σ(ρ) = 2ρ(1 ρ) = 2N(L N) L 2 N Q 2 c = σ L 1 Q 4 c = σ2 2(L 1) 2 Q 6 c = (L2 L+2)σ 3 2(L 1)σ 2 4(L 1) 3 (L 2) Q 8 c = (10L4 2L 3 +27L 2 15L+18)σ 4 4(L 1)(11L 2 L+12)σ 3 +48(L 1) 2 σ 2 24(L 1) 4 (L 2)(L 3) Q 2 c = σ L Gaussian + Fick's law Q 2n c σn L 2 for n 2

59 UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal

60 UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal Macroscopic ucuaion heory

61 UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal Macroscopic ucuaion heory + ucuaions around a a prole

62 DIFFUSIVE SYSTEMS: summary Open sysem T a T b Q n c / L 1 Ring T Q 2 c / L 1 Q 2n c / L 2 for n 2

63 HARD PARTICLE GAS: he second cumulan T a T a

64 HARD PARTICLE GAS: he second cumulan T a T a 2000 Q 2 ring Q 2 ring Q 2 ring / Q 2 ring / a) Q 2 b) / has a limi

65 HARD PARTICLE GAS: Size dependence of he cumulans OPEN SYSTEM lim Qn c/ Q 4 open c Q 3 open c Q 2 open c Q open lim Qn c/ Q 4 open c Q 2 open c Ta >Tb Ta = Tb a) N b) N RING 10 2 Q 4 ring c Q 2 ring c lim Qn c/ N

66 HARD PARTICLE GAS: Size dependence of he cumulans OPEN SYSTEM lim Qn c/ Q 4 open c Q 3 open c Q 2 open c Q open lim Qn c/ Q 4 open c Q 2 open c Ta >Tb Ta = Tb a) N b) N RING 10 2 Q 4 ring c Q 2 ring c lim Qn c/ ANOMALOUS FOURIER'S LAW N

67 Correlaions on a mesoscopic scale T a T a L Cor(x,.25) x Delni, Lepri, Livi, Mejia-Monaserio, Polii 2010 Gerschenfeld, D., Lebowiz 2010

68 Sep iniial condiion ρ a Q Q ρ b ASEP SSEP G. Schüz 98. Prähofer Spohn Tracy Widom 2008 D Gerschenfeld 2009 ρ a ρ b e λq =?

69 Sep iniial condiion on he innie line ρ a Q ρ b SSEP D Gerschenfeld 2009 e λq exp[ H(ω)] ] wih H(ω) = 1 [1 π dk log + ωe k2 and ω = 1 [1 (e λ 1)ρ a ][1 (1 e λ )ρ b ]

70 Sep iniial condiion on he innie line ρ a Q ρ b SSEP D Gerschenfeld 2009 e λq exp[ H(ω)] ] wih H(ω) = 1 [1 π dk log + ωe k2 and ω = 1 [1 (e λ 1)ρ a ][1 (1 e λ )ρ b ] For large Q : Pro(Q ) exp [ π2 12 Q3 / ]

71 Densiy proles condionned on he curren Densiy / space

72 Densiy proles condionned on he curren Densiy / space

73 OPEN QUESTIONS Large deviaion funcion of he densiy for a general diusive sysem Non seady sae siuaions Theory for mechanical sysems which conserved impulsion Mean eld heory for large deviaion funcions

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

3 Frequency Domain Representation of Continuous Signals and Systems

3 Frequency Domain Representation of Continuous Signals and Systems 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Non-Markovian dynamics of an open quantum system in fermionic environments

Non-Markovian dynamics of an open quantum system in fermionic environments Non-Marovian dynamics of an open quanum sysem in fermionic environmens J. Q. You Deparmen of Physics, Fudan Universiy, Shanghai, and Beijing Compuaional Science Research Cener, Beijing Mi Chen (PhD suden

Διαβάστε περισσότερα

Free Energy and Phase equilibria

Free Energy and Phase equilibria Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

D-Wave D-Wave Systems Inc.

D-Wave D-Wave Systems Inc. D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

The canonical 2nd order transfer function is expressed as. (ω n

The canonical 2nd order transfer function is expressed as. (ω n Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall 64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM Davide Gabrielli University of L Aquila (EURANDOM 2011) joint with 1 Continuous time Markov chains State space: configurations of particles η = configuration,

Διαβάστε περισσότερα

Fourier transform of continuous-time signals

Fourier transform of continuous-time signals Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Thermodynamics of the motility-induced phase separation

Thermodynamics of the motility-induced phase separation 1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Gaussian related distributions

Gaussian related distributions Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Metal Oxide Varistors (MOV) Data Sheet

Metal Oxide Varistors (MOV) Data Sheet Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping

Διαβάστε περισσότερα

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry. Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry. Shane Farnsworth, joint work with Latham Boyle. Perimeter Institute for Theoretical Physics arxiv:1408.5367,

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ETS i =1 ETS i = 0 Y it (1) Y it (0) α AT T = E[Y i1 (1) Y i1 (0) ETS i =1], α AT T E[Y i1 (1) ETS i =1] [Y i1 (0) ETS i =1] α AT T α biased AT T = E[ Y i (1) ETS i =1]+E[Y 0i ETS i =1] E[Y 0i ETS i =0].

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Chris Jarzynski Ins&tute for Physical Science and Technology Department of Chemistry & Biochemistry Department of

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

2. Chemical Thermodynamics and Energetics - I

2. Chemical Thermodynamics and Energetics - I . Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]

Διαβάστε περισσότερα

2.153 Adaptive Control Lecture 7 Adaptive PID Control

2.153 Adaptive Control Lecture 7 Adaptive PID Control 2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016 Comportement critique du modèle d accrochage de polymère Niccolò Torri Toulouse, 29 Mars 2016 1 Pinning Model 2 New Results 3 Proof 4 Perspectives N. Torri (Université de Nantes) Polymères aléatoires Toulouse,

Διαβάστε περισσότερα

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008 Charged

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα